Top Wavelength: 1512.2 nm DFB Laser

DFB laser diodes at 1512.2 nm are used for ammonia detection. Please have a look at the key features, specifications and applications.

Key features of nanoplus DFB laser diodes

  • monomode
  • continuous wave
  • room temperature
  • tunable
  • custom wavelengths

Why choose nanoplus DFB laser diodes

  • stable longitudinal and transversal single mode emission
  • precise selection of target wavelength
  • narrow laser line width
  • mode-hop-free wavelength tunability
  • fast wavelength tuning
  • typically > 5 mW output power
  • small size
  • easy usability
  • high efficiency
  • long-term stability

For more than 15 years nanoplus has been the technology leader for lasers in gas sensing. We produce lasers at large scale at our own fabrication sites in Gerbrunn and Meiningen. nanoplus cooperates with the leading system integrators in the TDLAS based analyzer industry. More than 20,000 installations worldwide prove the reliability of nanoplus lasers.

Quick description of nanoplus DFB laser technology

nanoplus uses a unique and patented technology for DFB laser manufacturing. We apply a lateral metal grating along the ridge waveguide, which is independent of the material system. Read more about our patented distributed feedback technology.

Related information for nanoplus DFB standard laser diodes at 1512.2 nm

Specifications

Mountings & Accessories

Applications

Papers & Links

The following table summarizes the typical DFB laser specifications at 1512.2 nm.

parameters (T = 25 °C)symbolunitminimumtypicalmaximum
wavelength precisionδnm0.1
optical output powerPoutmW5
forward currentIfmA70
threshold currentlthmA102530
current tuning coefficientCInm / mA0.0080.0150.02
temperature tuning coefficientCTnm / K0.070.10.14
typical maximum operating voltageVopV2
side mode suppression ratioSMSRdB> 35
slow axis (FWHM)degrees203040
fast axis (FWHM)degrees405060
emitting areaW x Hµm x µm2.0 x 1.03.0 x 1.55.0 x 2.0
storage temperatureTS°C-40+20+80
operational temperature at caseTC°C-20+25+50

nanoplus DFB lasers show outstanding spectral, tuning and electrical properties. They are demonstrated in figures 1 - 3. Click on the graphics to enlarge.

Figure 1: Spectrum of nanoplus 1512 nm DFB laser diode
Figure 1: Spectrum of nanoplus 1512 nm DFB laser diode
Figure 2: Mode hop free tuning of nanoplus 1512 nm DFB laser diode
Figure 2: Mode hop free tuning of nanoplus 1512 nm DFB laser diode
Figure 3: Typical power, voltage and current characteristics of nanoplus 1512 nm DFB laser diode
Figure 3: Typical power, voltage and current characteristics of nanoplus 1512 nm DFB laser diode

If you are uncertain whether you require a DFB laser, compare the specifications with our Fabry Perot Lasers or contact us.

nanoplus offers a variety of free space and fiber coupled mountings. Configure your laser according to your needs.

Free space mountings

Select a TO header with or without TEC. The TO headers are hermetically sealed with cap and window. Ask for customization without cap or without window. c-mount is available upon request. Please click on the mounting for detailed specifications and dimensions.

TO5 header
with TEC
and thermistor,
black cap and
AR coated window
TO5 header
TO56 header
without TEC
and thermistor,
cap and window
TO56 header
c-mount
without TEC
and thermistor
c-mount

Fiber coupled mountings

Choose between SM and PM fiber coupling. Please click on the mounting for detailed specifications and dimensions. The SM-BTF is available for lasers between 760 nm and 2360 nm, the PM-BTF option is offered for lasers between 1064 nm and 2050 nm.

butterfly package with single mode fiber, TEC and thermistor,
FC / APC connector
butterfly package with single mode fiber
butterfly package with polarization maintaining fiber, TEC and thermistor,
FC / APC connector
butterfly package with polarization maintaining fiber

Accessories

TO5 heatsink
TO5 heatsink

The nanoplus TO5 heatsink facilitates your laser set up by:

  • improved heat distribution
  • connectors for laser diode driver
  • connectors for temperature controller
  • M6 thread for optical posts
  • easy use with standard cage systems
TO5 heatsink with collimation
TO5 heatsink with collimation

The nanoplus TO5 heatsink is available with collimation. The optical set up guarantees a collimated elliptical beam shape.

 

 

nanoplus compact collimation module with heatsink and lens
nanoplus compact collimation module with heatsink and lens

The nanoplus compact collimation module offers:

  • collimated beam
  • specified beam direction
  • identical reference and heat sink plane
  • TEC + thermistor
  • hermetically sealed laser housing

Please find below a number of application samples.

Emission control of NOx:
NH3 is added in combustion processes to reduce emissions of the flue gas NOx. The two compounds will react to uncritical N2 and H2O. To avoid any corrosive or environmental effects from overuse, the gas volume needs to be continuously monitored. [3, 72]

Monitoring of breath gas:
Ammonia is used as a biomarker for helicobacter pylori infections. These infections are responsible for stomach ulcers. Breath analysis diagnoses the disease in a non-invasive way sparing patients a disagreeable gastroscopy. [63]

Please find below a selection of related papers from our literature list.

Let us know if you published a paper with our lasers. We will be happy to include it in our literature list.

#9 DFB Lasers Between 760 nm and 16 µm for Sensing Applications;
W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth, Sensors 2010, 10, pp. 2492-2510.