Top Wavelength: 3270.0 nm DFB Laser

DFB interband cascade lasers at 3270.0 nm are used for methane detection. Please have a look at the key features, specifications and applications.

TO66 header

Key features of nanoplus DFB interband cascade lasers

  • monomode
  • continuous wave
  • room temperature
  • low power consumption
  • tunable
  • custom wavelengths

Why choose nanoplus DFB interband cascade lasers

  • stable longitudinal and transversal single mode emission
  • precise selection of target wavelength
  • narrow laser line width
  • mode-hop-free wavelength tunability
  • fast wavelength tuning
  • typically > 5 mW output power
  • small size
  • easy usability
  • high efficiency
  • long-term stability

For more than 15 years nanoplus has been the technology leader for lasers in gas sensing. We produce lasers at large scale at our own fabrication sites in Gerbrunn and Meiningen. nanoplus cooperates with the leading system integrators in the TDLAS based analyzer industry. More than 20,000 installations worldwide prove the reliability of nanoplus lasers.

Quick description of nanoplus DFB laser technology

nanoplus uses a unique and patented technology for DFB laser manufacturing. We apply a lateral metal grating along the ridge waveguide, which is independent of the material system. Read more about our patented distributed feedback technology.

Related information for nanoplus DFB standard laser diodes at 3270.0 nm

Specifications

Mountings & Accessories

Applications

Papers & Links

The following table summarizes the typical DFB laser specifications at 3270.0 nm.

parameterssymbolunitminimumtypicalmaximum
wavelength precisionδnm0.1
optical output powerPoutmW> 1
forward currentIfmA70
threshold currentlthmA50
current tuning coefficientCInm / mA0.2
temperature tuning coefficientCTnm / K0.3
typical maximum operating voltageVopV4 - 6
side mode suppression ratioSMSRdB> 35
slow axis (FWHM)degrees35
fast axis (FWHM)degrees55
storage temperatureTS°C+20
operational temperature at caseTC°C+20

nanoplus DFB lasers show outstanding spectral, tuning and electrical properties. They are demonstrated in figures 1 - 3. Click on the graphics to enlarge.

Figure 1: Spectrum of nanoplus 3270 nm DFB interband cascade laser
Figure 1: Spectrum of nanoplus 3270 nm DFB interband cascade laser
Figure 2: Mode hop free tuning of nanoplus 3270 nm DFB interband cascade laser
Figure 2: Mode hop free tuning of nanoplus 3270 nm DFB interband cascade laser
Figure 3: Typical power, voltage and current characteristics of nanoplus 3270 nm DFB interband cascade laser
Figure 3: Typical power, voltage and current characteristics of nanoplus 3270 nm DFB interband cascade laser

If you are uncertain whether you require a DFB laser, compare the specifications with our Fabry Perot Lasers or contact us.

Free space mounting

nanoplus developed a specific free space package for interband cascade lasers. The TO66 header disposes of an extra large thermo-electric cooler. It is hermetically sealed with a black cap and anti reflection coated window. Please click on the mounting for detailed specifications and dimensions.

TO66 header
with TEC
and thermistor,
black cap and
AR coated window
TO66 header

Accessories

TO66 heatsink
TO66 heatsink

The nanoplus TO66 heatsink facilitates your laser set up by:

  • improved heat distribution
  • connectors for laser diode driver
  • connectors for temperature controller
  • M6 thread for optical posts
  • easy use with standard cage systems
nanoplus compact collimation module with heatsink and lens
nanoplus compact collimation module with heatsink and lens

The nanoplus compact collimation module offers:

  • collimated beam
  • specified beam direction
  • identical reference and heat sink plane
  • TEC + thermistor
  • hermetically sealed laser housing

Please find below a number of application samples.

Combustion control in high temperature processes:
Continuous monitoring of contents like CO2 or CH4 concentrations is essential for the efficiency of high-temperature processes in e. g. incinerators, furnaces or petrochemical refineries. Managing the CO2 content in combustion processes simultaneously reduces greenhouse gas emissions. This is also relevant for energy generating industries like coal burning power plants. [12, 35, 40, 45, 62]

Combustion control in integrated gasification fuel cell cycles:
Methane content of syngas is controlled to improve combustion efficiency of integrated gasification fuel cell cycles. [35]

Emission control of greenhouse gases:
Greenhouse gas effects and climate change have triggered global emission monitoring of pollutants like methane. Methane is one of the Earth’s most important atmospheric gases. It is, to a large extend, responsible for the accelerating greenhouse effect. The global warming potential of methane is about 30 times higher than that of CO2 based on a 100 year scale. Studies are executed on behalf of the US Environmental Protection Agency to quantify the methane emissions caused by the increased natural gas exploration and production in the US. [61, 92]

Leakage control in gas pipelines:
Leaks of CH4 may cause dangerous situations and are hard to locate precisely. Hence, maintenance of underground pipelines produces high costs. CH4 leaks are also an important source for greenhouse gases. With TDLS a strong tool is available to manufacture portable leak detectors.

Please find below a selection of related papers from our literature list.

Let us know if you published a paper with our lasers. We will be happy to include it in our literature list.

#5 DFB lasers exceeding 3 µm for industrial applications;
L. Naehle, L. Hildebrandt, Laser+Photonics 2012, pp. 78-80.

#7 DFB laser diodes expand hydrocarbon sensing beyond 3 µm;
L. Hildebrandt, L. Naehle, Laser Focus World, January 2012, pp. 87-90.

#9 DFB Lasers Between 760 nm and 16 µm for Sensing Applications;
W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth, Sensors 2010, 10, pp. 2492-2510.

#13 Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 µm wavelength range around room temperature;
L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth and L. Worschech, Electron. Lett. 47, 1, Jan 2011, pp. 46-47.

#19 Measurements of Mars Methane at Gale Crater by the SAM Tunable Laser Spectrometer on the Curiosity Rover;
C.R. Webster, P.R. Mahaffy, S.K. Atreya, G.J. Flesch, K.A. Farley, 44th Lunar and Planetary Science Conference, March 18-22, 2013, LPI Contribution No. 1719, p.1366.

#29 Detection of Methane Isotopologues – cw-OPO vs. DFB Diode Laser;
M. Wolff, S. Rhein, H. Bruhns, J. Koeth, L. Hildebrandt, P. Fuchs, 16th International Conference on Photoacoustic and Photothermal Phenomena.

#35 TDLAS-based sensors for in situ measurement of syngas composition in a pressurized, oxygen-blown, entrained flow coal gasifier;
R. Sur, K. Sun, J.B. Jeffries, R.K. Hanson, R.J. Pummill, T. Waind, D.R. Wagner, K.J. Whitty, Appl. Phys. B, 116, 1, 2014, pp. 33-42.

#50 Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring;
J. J. Scherer, J. B. Paul, H. J. Jost, Marc L. Fischer, Appl. Phys. B, 109, 3, Nov. 2012, pp. 271-277.

#61 Demonstration of an Ethane Spectrometer for Methane Source Identification;
T.I. Yacovitch, S.C. Herndon, J.R. Roscioli, C. Floerchinger, R.M. McGovern, M. Agnese, G. Petron, J. Kofler, C. Sweeney, A. Karion, S.A. Conley, E.A. Kort, L. Naehle, M. Fischer, L. Hildebrandt,.J. Koeth, J.B. McManus, D.D. Nelson, M.S. Zahniser, C.E. Kolb, Environ. Sci. Technol., 48, 2014, 8028-8034.

#62 High-sensitivity interference-free diagnostic for measurement of methane in shock tubes;
R. Sur, S. Wang, K. Sun, D. F. Davidson, J. B. Jeffries, R. K. Hanson, J. of Quant. Spectrosc. and Rad. Transfer, Vol. 156, May 2015, pp. 80–87.

#64 Interband Cascade Lasers - Topical Review;
I. Vurgaftman, R. Weih, M. Kamp, C.L. Canedy, C.S. Kim, M. Kim, W.W. Bewley, C.D. Merritt, J. Abell, S. Hoefling, J. Phys. D: Appl. Phys. 48, 2015, pp. 123001-12017.

#74 Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 μm interband cascade laser;
K. M. Manfred, G. A. D. Ritchie, N. Lang, J. Röpcke, and J. H. van Helden, App. Phys. Lett., 106, 2015, 221106.

#77 Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing;
L. Dong, F. K. Tittel, C. Li, N. P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, R. J. Griffin; Optics Express Vol. 24, Issue 6, 2016, pp. A528-A535.

#81 Dynamic spectral characteristics measurement of DFB interband cascade laser under
injection current tuning
;
Z. Du, G. Luo, Y. An, J. Li, Appl. Phys. Lett. 109, 2016, 011903.

# 85 Frequency modulation characteristics for interband cascade lasers emitting at 3 µm;
J. Li, Z. Du, Y. An, Appl. Phys. B, 2015, 121:7–17.

#90 Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 µm interband cascade laser;
K. M. Manfred, G. A. D. Ritchie, N. Lang, J. Roepcke, J. H. van Helden, Appl. Phys. Lett. 106, 2015, 221106.

#092 Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy;
Ch. Zheng, W. Ye, N. P. Sanchez, Ch. Li, L. Dong, Y. Wang, R. J. Griffin, F. K. Tittel, Sensors and Actuators B: Chemical, Vol. 244, June 2017, 365–372.

Request for quotation

Download technical notes