Top Wavelength: 3560.0 nm DFB Laser

DFB interband cascade lasers at 3560.0 nm are used for formaldehyde detection. Please have a look at the key features, specifications and applications.

TO66 header

Key features of nanoplus DFB interband cascade lasers

  • monomode
  • continuous wave
  • room temperature
  • low power consumption
  • tunable
  • custom wavelengths

Why choose nanoplus DFB interband cascade lasers

  • stable longitudinal and transversal single mode emission
  • precise selection of target wavelength
  • narrow laser line width
  • mode-hop-free wavelength tunability
  • fast wavelength tuning
  • typically > 5 mW output power
  • small size
  • easy usability
  • high efficiency
  • long-term stability

For more than 15 years nanoplus has been the technology leader for lasers in gas sensing. We produce lasers at large scale at our own fabrication sites in Gerbrunn and Meiningen. nanoplus cooperates with the leading system integrators in the TDLAS based analyzer industry. More than 20,000 installations worldwide prove the reliability of nanoplus lasers.

Quick description of nanoplus DFB laser technology

nanoplus uses a unique and patented technology for DFB laser manufacturing. We apply a lateral metal grating along the ridge waveguide, which is independent of the material system. Read more about our patented distributed feedback technology.

Related information for nanoplus DFB standard laser diodes at 3560.0 nm

Specifications

Mountings & Accessories

Applications

Papers & Links

The following table summarizes the typical DFB laser specifications at 3560.0 nm.

parameterssymbolunitminimumtypicalmaximum
wavelength precisionδnm0.1
optical output powerPoutmW> 1
forward currentIfmA70
threshold currentlthmA50
current tuning coefficientCInm / mA0.2
temperature tuning coefficientCTnm / K0.3
typical maximum operating voltageVopV4 - 6
side mode suppression ratioSMSRdB> 35
slow axis (FWHM)degrees35
fast axis (FWHM)degrees55
storage temperatureTS°C+20
operational temperature at caseTC°C+20

nanoplus DFB lasers show outstanding spectral, tuning and electrical properties. They are demonstrated in figures 1 - 3. Click on the graphics to enlarge.

Figure 1: Spectrum of nanoplus 3560 nm DFB interband cascade laser
Figure 1: Spectrum of nanoplus 3560 nm DFB interband cascade laser
Figure 2: Mode hop free tuning of nanoplus 3560 nm DFB interband cascade laser
Figure 2: Mode hop free tuning of nanoplus 3560 nm DFB interband cascade laser
Figure 3: Typical power, voltage and current characteristics of nanoplus 3560 nm DFB interband cascade laser
Figure 3: Typical power, voltage and current characteristics of nanoplus 3560 nm DFB interband cascade laser

If you are uncertain whether you require a DFB laser, compare the specifications with our Fabry Perot Lasers or contact us.

Free space mounting

nanoplus developed a specific free space package for interband cascade lasers. The TO66 header disposes of an extra large thermo-electric cooler. It is hermetically sealed with a black cap and anti reflection coated window. Please click on the mounting for detailed specifications and dimensions.

TO66 header
with TEC
and thermistor,
black cap and
AR coated window
TO66 header

Accessories

TO66 heatsink
TO66 heatsink

The nanoplus TO66 heatsink facilitates your laser set up by:

  • improved heat distribution
  • connectors for laser diode driver
  • connectors for temperature controller
  • M6 thread for optical posts
  • easy use with standard cage systems
nanoplus compact collimation module with heatsink and lens
nanoplus compact collimation module with heatsink and lens

The nanoplus compact collimation module offers:

  • collimated beam
  • specified beam direction
  • identical reference and heat sink plane
  • TEC + thermistor
  • hermetically sealed laser housing

Please find below a number of application samples.

Workplace exposure monitoring:

Formaldehyde has been used in consumer and industrial products since the beginning of the 19th century. Currently the annual formaldehyde production accounts for 21 million tons. About 50 % are processed as adhesives in pressed wood panels. In 2004 formaldehyde has been classified carcinogenic by the International Agency for Research on Cancer. Since then formaldehyde concentrations have been strictly controlled in the production process as well as in the finished product. Laser-based measurement systems are required to detect the maximum levels of 0.01 ppb (USA) and 2 ppb (EU). [9, 22, 78]

Chemical sensing using surface plasmon polariton:
A 3.6 µm ICL is used to enhance the reading of the surface plasmon polariton effect. [83]

Please find below a selection of related papers from our literature list.

Let us know if you published a paper with our lasers. We will be happy to include it in our literature list.

#2 Advanced Gas Sensing Applications Above 3 µm with DFB Laser Diodes;
L. Naehle, L. Hildebrandt, M. Fischer, J. Koeth, Gases & Instrumentation, March/April 2012, pp. 25-28.

#5 DFB lasers exceeding 3 µm for industrial applications;
L. Naehle, L. Hildebrandt, Laser+Photonics 2012, pp. 78-80.

#7 DFB laser diodes expand hydrocarbon sensing beyond 3 µm;
L. Hildebrandt, L. Naehle, Laser Focus World, January 2012, pp. 87-90.

#8 ICLs open opportuneties for mid-IR seinsing;
L. Naehle, L. Hildebrandt, M. Kamp, S. Hoefling, Laser Focus World, May 2013, pp. 70-73.

#9 DFB Lasers Between 760 nm and 16 µm for Sensing Applications;
W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth, Sensors 2010, 10, pp. 2492-2510.

#22 Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm;
S. Lundqvist, P. Kluczynski, R. Weih, M. von Edlinger, L. Naehle, M. Fischer, A. Bauer, S. Hoefling, J. Koeth, Appl. Opt., 51, 25, 2012, pp. 6009-6013.

#36 Single mode interband cascade lasers based on lateral metal gratings;
R. Weih, L. Naehle, Sven Hoefling, J. Koeth, M. Kamp, Appl. Phys. Lett., 105, 7, 2014, pp. 071111.

#64 Interband Cascade Lasers - Topical Review;
I. Vurgaftman, R. Weih, M. Kamp, C.L. Canedy, C.S. Kim, M. Kim, W.W. Bewley, C.D. Merritt, J. Abell, S. Hoefling, Phys. D: Appl. Phys. 48, 2015, pp. 123001-12017.

#78 Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell;
L. Dong,Y. Yu,.C. Li, S. So, F. Tittel, Optics Express Vol. 23, Issue 15, 2015, pp. 19821-19830.

# 83 Mid-infrared surface plasmon polariton chemical sensing on fiber-coupled ITO coated glass;
J. Martínez, A. Ródenas, M. Aguiló, T. Fernandez, J. Solis, F. Díaz, Optics Letters, Vol. 41, No. 11, June 1 2016,
pp. 2493 - 2496.

Request for quotation

Download technical notes