Distributed Feedback Lasers: 4600 nm - 5300 nm

nanoplus offers DFB interband cascade lasers at any wavelength between 4600 nm and 5300 nm.

TO66 header

Key features of nanoplus DFB interband cascade lasers

  • monomode
  • continuous wave
  • room temperature
  • low power consumption
  • tunable
  • custom wavelengths

Why choose nanoplus DFB interband cascade lasers

  • stable longitudinal and transversal single mode emission
  • precise selection of target wavelength
  • narrow laser line width
  • mode-hop-free wavelength tunability
  • fast wavelength tuning
  • typically > 5 mW output power
  • small size
  • easy usability
  • high efficiency
  • long-term stability

For more than 20 years nanoplus has been the technology leader for lasers in gas sensing. We produce lasers at large scale at our own fabrication sites in Gerbrunn and Meiningen. nanoplus cooperates with the leading system integrators in the TDLAS based analyzer industry. More than 30,000 installations worldwide prove the reliability of nanoplus lasers.

Quick description of nanoplus DFB laser technology

nanoplus uses a unique and patented technology for DFB laser manufacturing. We apply a lateral metal grating along the ridge waveguide, which is independent of the material system. Read more about our patented distributed feedback technology.

Related information for nanoplus DFB interband cascade lasers from 4600 nm to 5300 nm

Specifications

Mountings & Accessories

Applications

Papers & Links

The following tables summarize the typical DFB laser specifications in the 4600 nm to 5300 nm range:

parameterssymbolunitminimumtypicalmaximum
operating wavelength (at Top, Iop)λopnm0.1 nm
optical output power (at λop) PopmW3
operating currentIopmA120
operating voltageVopV5
threshold currentIthmA304070
side mode suppression ratioSMSRdB> 35
current tuning coefficientCInm / mA0.14
temperature tuning coefficientCTnm / K0.48
operating chip temperatureTop°C+10+20+50
operating case temperature*TC°C-20+25+50
storage temperature*TS°C-30+20+70

* non-condensing

nanoplus DFB lasers show outstanding spectral, tuning and electrical properties. They are demonstrated in figures 1 - 3. Click on the graphics to enlarge.

Figure 1: Spectrum of a nanoplus 5263 nm DFB interband cascade laser
Figure 1: Spectrum of a nanoplus 5263 nm DFB interband cascade laser
Figure 2: Mode hop free tuning of a nanoplus 5263 nm DFB interband cascade laser
Figure 2: Mode hop free tuning of a nanoplus 5263 nm DFB interband cascade laser
Figure 3: Typical power, current and voltage characteristics of a nanoplus 5263 nm DFB interband cascade laser
Figure 3: Typical power, current and voltage characteristics of a nanoplus 5263 nm DFB interband cascade laser

If you are uncertain whether you require a DFB laser, compare the specifications with our Fabry-Pérot lasers or contact us.

Free space mounting

nanoplus developed a specific free space package for interband cascade lasers. The TO66 header disposes of an extra large thermo-electric cooler. It is hermetically sealed with a black cap and anti reflection coated window. Please click on the mounting for detailed specifications and dimensions.

TO66 header
with TEC and thermistor,
black cap and AR coated window
TO66 header

OEM mounting

For our OEM customers we offer a very small footprint package that is easy to integrate.

chip on heatspreader with NTC, without TEC

Accessories

TO66 heatsink
TO66 heatsink

The nanoplus TO66 heatsink facilitates your laser set up by:

  • improved heat distribution
  • connectors for laser diode driver
  • connectors for temperature controller
  • M6 thread for optical posts
  • easy use with standard cage systems

Carbon dioxide, nitric oxide, water vapour and most hydrocarbons, like methane, acetylene, formaldehyde and ethane have their strongest absorption features between 3000 nm and 6000 nm.

For detailed absorption data, please refer to HITRAN database and to our Applications by Gas section.

Please find below a selection of related papers from our literature list.

Let us know if you published a paper with our lasers. We will be happy to include it in our literature list.

#2 Advanced Gas Sensing Applications Above 3 µm with DFB Laser Diodes;
L. Naehle, L. Hildebrandt, M. Fischer, J. Koeth, Gases & Instrumentation, March/April 2012, pp. 25-28.

#8 ICLs open opportuneties for mid-IR seinsing;
L. Naehle, L. Hildebrandt, M. Kamp, S. Hoefling, Laser Focus World, May 2013, pp. 70-73.

#9 DFB Lasers Between 760 nm and 16 µm for Sensing Applications;
W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth, Sensors 2010, 10, pp. 2492-2510.

#13 Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 µm wavelength range around room temperature;
L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth and L. Worschech, Electron. Lett. 47, 1, Jan 2011, pp. 46-47.

#18 Monomode Interband Cascade Lasers at 5.2 µm for Nitric Oxide Sensing;
M. von Edlinger, J. Scheuermann, R. Weih, C. Zimmermann, L. Naehle, M. Fischer, J. Koeth, IEEE Phot. Tech. Lett., 26, 5, 2014, pp. 480-482.

#26 Corrugated-sidewall interband cascade lasers with single-mode midwave-infrared emission at room temperature;
C.S. Kim, M. Kim, W.W. Bewley, J.R. Lindle, C.L. Canedy, J. Abell, I. Vurgaftman, J.R. Meyer, Appl. Phys. Lett., 95, 2009, 231103.

#36 Single mode interband cascade lasers based on lateral metal gratings;
R. Weih, L. Naehle, Sven Hoefling, J. Koeth, M. Kamp, Appl. Phys. Lett., 105, 7, 2014, pp. 071111.

#43 Chemical analysis of surgical smoke by infrared laser spectroscopy;
Michele Gianella, Markus W. Sigrist, Appl. Phys. B, 109, 3, Nov. 2012, pp. 485-496.

#54 Demonstration of the self-mixing effect in interband cascade lasers;
K. Bertling, Y.L. Lim, T. Taimre, D. Indjin, P. Dean, R. Weih, S. Hoefling, M. Kamp, M. von Edlinger, J. Koeth, A.D. Rakic, Appl. Phys. Lett., 103, 2013, 231107.

#64 Interband Cascade Lasers - Topical Review;
I. Vurgaftman, R. Weih, M. Kamp, C.L. Canedy, C.S. Kim, M. Kim, W.W. Bewley, C.D. Merritt, J. Abell, S. Hoefling, Phys. D: Appl. Phys. 48, 2015, pp. 123001-12017.

#67 New Opportunities in Mid-Infrared Emission Control;
P. Geiser, Sensors, 2015, pp. 22724-22736.

#75 Interband cascade laser sources in the mid-infrared for green photonics;
J. Koeth, M. von Edlinger, J. Scheuermann, S. Becker, L. Nähle, M. Fischer, R. Weih, M. Kamp, S. Höfling, Proc. SPIE 9767, Novel In-Plane Semiconductor Lasers XV, 976712, March 10, 2016.

#93 Interband cascade laser-based optical transfer standard for atmospheric carbon monoxide measurements;
J. A. Nwaboh, Z. Qu, O. Werhahn and V. Ebert, App. Optics, Vol. 56, No. 11, April 10, 2017, pp. E84-E93.

#100 Multiheterodyne spectroscopy using interband cascade lasers;
L. A. Sterczewski, J. Westberg, C. L. Patrick, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, C. D. Merritt, I. Vurgaftman, J. R. Meyer and G. Wysocki, Opt. Eng. 57(1), 011014, Jan. 2018.

#101 Single-mode interband cascade laser multiemitter structure for two-wavelength absorption spectroscopy; J. Scheuermann, R. Weih, S. Becker, M. Fischer, J. Koeth, S. Höfling, Opt. Eng. 57(1), 011008, Sept. 2017

#102 Laser detection;

L. Hildebrandt, Hydrocarbon Engineering, Feb. 2018

#106 Design and performance of a dual-laser instrument for multiple isotopologues of carbon dioxide and water;
J. B. McManus, D. D. Nelson and M. S. Zahniser, Optics Express Vol. 23, Issue 5, 2015, pp. 6569-6586.

# 107 Recent progress in laser‑based trace gas instruments: performance and noise analysis;
J. B. McManus, M. S. Zahniser, D. D. Nelson et. al., Appl. Phys. B, 2015, 119: 203.

#117 Nitric oxide analysis down to ppt levels by optical-feedback cavity-enhanced absorption spectroscopy;
L. Richard, D. Romanini, I. Ventrillard, Sensors, MDPI, Vol. 18, Iss. 7, 2018.

#118 The driver design for N2O gas detection system based on tunable interband cascade laser;
L. Liao, J. Zhang, D. Dong, E3S Web Conf., Vol. 78, 2019, 03002.

#119 Metrological quantification of CO in biogas using laser absorption spectroscopy and gas chromatography;
J. A. Nwaboh, S. Persijn, K. Arrhenius, H. Bohlén, O. Werhahn, V. Ebert, Meas. Sci. Technol., Vol. 29, No. 9, 2018.

#132 Unveiling quantum-limited operation of interband cascade lasers;
S. Borri , M. Siciliani de Cumis , S. Viciani , F. D’Amato, P. De Natale, APL Phot., Vol. 5, Iss. 3, 036101, 2020.

#133 Light and microwaves in laser frequency combs: an interplay of spatio-temporal phenomena,
M. Piccardo, D. Kazakov, B. Schwarz, P. Chevalier, A. Amirzhan, Y. Wang, F. Xie, K. Lascola, S. Becker, L. Hildebrandt, R. Weih, A. Belyanin, F. Capasso, 2019 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2019, pp. 1-2.

Video

nanoplus ICL introduction: Introduction into nanoplus DFB Interband Cascade Lasers for Tunable Diode Laser Absorption Spectroscopy

The nanoplus DFB ICL opens tunable laser absorption spectroscopy (TLAS) for novel MIR applications in industrial gas sensing.

In the 3 μm to 6 μm wavelength window, now covered by interband cascade lasers, many industrially relevant trace gases have their strongest absorption bands. They show absorption strengths that are several orders of magnitude higher than those in other infrared (IR) areas. This concerns prevalent molecules such as carbon dioxide (CO2), nitric oxide (NO) or water (H2O). Most hydrocarbons, e. g. methane, equally locate their topmost absorbing features at these ICL wavelengths.

Using the strongest absorption band of the detected trace gas contributes to

  • accelerate the sensing speed
  • reduce the noise and
  • miniaturize the sensor.

nanoplus ICLs are considered for various progressive applications in industry and research. In the oil and gas sector, they enable accurate process control and support higher energy efficiency and pollutant reduction.

Compared to other sensing techniques, such as gas chromatography, TLAS-based sensors offer the unmatched advantage of real-time analysis.

nanoplus DFB ICL technology outperforms other MIR laser technologies

Different laser technologies have been investigated in recent years to access the 3 μm to 6 μm wavelength range. Besides interband cascade lasers, GaSb-based type I interband diodes and intersubband quantum cascade lasers (QCL) have been a major focus of research.

While GaSb-based type I interband diodes have the disadvantage of decreasing hole confinement and increasing Auger recombination, fast phonon scattering loss impairs the use of intersubband QCLs.

An interband cascade laser, in contrast, uses optical transitions between an electron state in the conduction band and a hole state in the valence band in a cascade of Sb-based type-II QW structures. A broken-gap band edge alignment enables the tailoring of the emission wavelength by altering the cascade structures.

Interband-cascade technology is ideal for high-performance lasing in the entire range from 3 μm to
6 μm due to relatively wavelength-independent threshold powers. It combines high performance with reasonably low power consumption. Like all nanoplus lasers, these devices are manufactured without epitaxial overgrowth, avoiding impairment of ICL performance due to the insertion of patterning-induced defects within the laser layers.

Prism Award Winners 2012

nanoplus DFB interband cascade lasers (ICLs) won the “Prism Award for Green Photonics and Sustainable Energy” in 2012. They cover the entire wavelength range from 3000 nm to 6000 nm. Many prominent gas species have their strongest absorption features in this window. They are now accessible for tunable diode laser spectroscopy in industry and research. SPIE and Photonics Media honored the laser development in a ceremony during Photonics West in San Francisco.

nanoplus DFB interband cascade laser facilitates new TDLAS applications in mid-infrared

nanoplus offers a DFB interband cascade laser (ICL) at any target wavelength in the mid-infrared (MIR) between 3 μm and 6 μm. The device operates in continuous wave (cw) mode around room temperature. Specifications and behavior are very comparable to a nanoplus laser at lower wavelengths. When you set up an ICL-based analyzer, you can, hence, transfer the engineering knowledge you have gained from building short-wavelength gas sensors.

Discuss your project with us

nanoplus is the only laser manufacturer offering DFB interband cascade lasers in the total range from 3 μm to 6 μm. We do the complete processing in house and may adapt our processes to your specifications. Contact us now to discuss your project.

Request for quotation

Read more about our privacy policy.