Top Wavelength: 4524 nm & 4534 nm DFB Laser

DFB interband cascade lasers at 4524 nm and 4534 nm are used for nitrogen oxide detection.
Please have a look at the key features, specifications and applications.

TO66 header

Key features of nanoplus DFB interband cascade lasers

  • monomode
  • continuous wave
  • room temperature
  • low power consumption
  • tunable
  • custom wavelengths

Why choose nanoplus DFB interband cascade lasers

  • stable longitudinal and transversal single mode emission
  • precise selection of target wavelength
  • narrow laser line width
  • mode-hop-free wavelength tunability
  • fast wavelength tuning
  • typically > 5 mW output power
  • small size
  • easy usability
  • high efficiency
  • long-term stability

For more than 20 years nanoplus has been the technology leader for lasers in gas sensing. We produce lasers at large scale at our own fabrication sites in Gerbrunn and Meiningen. nanoplus cooperates with the leading system integrators in the TDLAS based analyzer industry. More than 30,000 installations worldwide prove the reliability of nanoplus lasers.

Quick description of nanoplus DFB laser technology

nanoplus uses a unique and patented technology for DFB laser manufacturing. We apply a lateral metal grating along the ridge waveguide, which is independent of the material system. Read more about our patented distributed feedback technology.

Related information for nanoplus DFB standard laser diodes at 4524 nm & 4534 nm

Specifications

Mountings & Accessories

Applications

Papers & Links

The following table summarizes the typical DFB laser specifications at 4524 nm & 4534 nm.

parameters symbolunitminimumtypicalmaximum
operating wavelength (at Top, Iop)λopnm4524 / 4534
optical output power (at λop) PopmW8
operating currentIopmA120
operating voltageVopV5
threshold currentIthmA203040
side mode suppression ratioSMSRdB> 35
current tuning coefficientCInm / mA0.12
temperature tuning coefficientCTnm / K0.45
operating chip temperatureTop°C+15+20+40
operating case temperature*TC°C-20+25+55
storage temperature*TS°C-30+20+70

* non-condensing

nanoplus DFB lasers show outstanding spectral, tuning and electrical properties. They are demonstrated in figures 1 - 3. Click on the graphics to enlarge.

Figure 1: Spectrum of a nanoplus 4524 nm DFB interband cascade laser
Figure 1: Spectrum of a nanoplus 4524 nm DFB interband cascade laser
Figure 2: Mode hop free tuning of a nanoplus 4524 nm DFB interband cascade laser
Figure 2: Mode hop free tuning of a nanoplus 4524 nm DFB interband cascade laser
Figure 3: Typical power, current and voltage characteristics of a nanoplus 4524 nm DFB interband cascade laser
Figure 3: Typical power, current and voltage characteristics of a nanoplus 4524 nm DFB interband cascade laser

If you are uncertain whether you require a DFB laser, compare the specifications with our Fabry-Pérot lasers or contact us.

Free space mounting

nanoplus developed a specific free space package for interband cascade lasers. The TO66 header disposes of an extra large thermo-electric cooler. It is hermetically sealed with a black cap and anti reflection coated window. Please click on the mounting for detailed specifications and dimensions.

TO66 header
with TEC and thermistor,
black cap and AR coated window
TO66 header

OEM mounting

For our OEM customers we offer a very small footprint package that is easy to integrate.

chip on heatspreader with NTC, without TEC

Accessories

TO66 heatsink
TO66 heatsink

The nanoplus TO66 heatsink facilitates your laser set up by:

  • improved heat distribution
  • connectors for laser diode driver
  • connectors for temperature controller
  • M6 thread for optical posts
  • easy use with standard cage systems

Please find below a number of application samples.

Emission control of flue gases: NOx
NOx is produced during fuel combustion at power plants and other industrial facilities. When it reacts with SO2 it causes acid rain. For this reason NOx and SO2 emissions are restricted and need to be monitored. [67]

Monitoring of breath gas: NOx
The field of breath analysis considers NOx as a biomarker for asthma and other pulmonary diseases. This new technology becomes more established for clinical applications. It is a cost-effective and non-invasive method of diagnosis and treatment monitoring. [49, 117]

Emission control of exhaust fumes: CO2 and NOx
Guided by environmental policies, the automobile industry is concerned to reduce the carbon footprint of vehicles. Automotive suppliers develop innovative combustion engines to control CO2 and NOx concentration in exhaust fumes. [116]

Please find below a selection of related papers from our literature list.

Let us know if you published a paper with our lasers. We will be happy to include it in our literature list.

#9 DFB Lasers Between 760 nm and 16 µm for Sensing Applications;
W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth, Sensors 2010, 10, pp. 2492-2510.

#11 Quantum cascade laser linewidth investigations for high resolution photoacoustic spectroscopy;
M. Germer, M. Wolff, Appl. Opt. 48, 4, 2009, pp. B80-B86.

#18 Monomode Interband Cascade Lasers at 5.2 µm for Nitric Oxide Sensing;
M. von Edlinger, J. Scheuermann, R. Weih, C. Zimmermann, L. Naehle, M. Fischer, J. Koeth, IEEE Phot. Tech. Lett., 26, 5, 2014, pp. 480-482.

#31 QCL based NO Detection;
M. Wolff, J. Koeth, L. Hildebrandt, P. Fuchs; 16th International Conference on Photoacoustic and Photothermal Phenomena.

#49 Spectroscopic monitoring of NO traces in plants and human breath: applications and perspectives;
S. M. Cristescu, D. Marchenko, J. Mandon, K. Hebelstrup, G. W. Griffith, L. A. J. Mur, F. J. M. Harren, Appl. Phys. B, 109, 3, Nov. 2012, pp. 203-211.

#50 Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring;
J. J. Scherer, J. B. Paul, H. J. Jost, Marc L. Fischer, Appl. Phys. B, 109, 3, Nov. 2012, pp. 271-277.

#64 Interband Cascade Lasers - Topical Review;
I. Vurgaftman, R. Weih, M. Kamp, C.L. Canedy, C.S. Kim, M. Kim, W.W. Bewley, C.D. Merritt, J. Abell, S. Hoefling, Phys. D: Appl. Phys. 48, 2015, pp. 123001-12017.

#118 The driver design for N2O gas detection system based on tunable interband cascade laser;
L. Liao, J. Zhang, D. Dong, E3S Web Conf., Vol. 78, 2019, 03002.

#132 Unveiling quantum-limited operation of interband cascade lasers;
S. Borri , M. Siciliani de Cumis , S. Viciani , F. D’Amato, P. De Natale, APL Phot., Vol. 5, Iss. 3, 036101, 2020.

Request for quotation

Read more about our privacy policy.