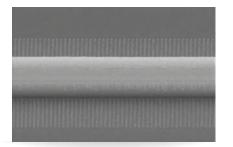


Schematic DFB

with spectrum

TOP Wavelengths

DFB: 760.8 nm


nanoplus Distributed Feedback Lasers (**DFB**) are specifically designed for high-precision gas detection using tunable diode laser absorption spectroscopy (**TDLAS**). Our devices operate **reliably** in more than 50,000 installations worldwide. For 25 years nanoplus has set the standard for DFB laser technology and is the only manufacturer routinely providing DFB lasers at **any wavelength**.

Key features:

- MONOMODE
- CONTINUOUS WAVE
- ROOM TEMPERATURE
- MODE HOP FREE TUNING

Any **custom wavelength** is possible: You tell us what you need and we deliver it. With our patented DFB technology we design any wavelength **between 760 nm and 14 μm.**

Our excellent **spectral purity** is characterized by a large side mode suppression ratio **(SMSR)** of **> 35 dB**, giving your system a low signal to noise ratio against crossinterference.

Overgrowth-free DFB device processing

A **narrow linewidth below 3 MHz** guarantees ultra-precise scanning of the absorption line feature. The **high output power** of **several mW** yields a stronger signal and increases your measurement precision.


Fast and wide wavelength tuning is required for in situ systems. Most customers use a scan rate of 10 kHz and benefit from our very large tuning coefficient.

"Do not change your ideas, let us deliver the laser that fits your application."

We offer **various packaging options**, e.g. several free space housings including TEC and NTC, fiber coupling, **collimation** and **custom designs**. What do you require?

If you require **custom specifications**, please contact us. Nearly 80 % of our devices are more or less customer-specific. As nanoplus is a **fully vertically integrated company**, we control the entire process chain from design to packaging. Both nanoplus production facilities are based in **Germany**. To guarantee consistent product quality we apply a strict and **ISO certified quality management system** at all levels.

Our sales and R&D teams have long-standing experience in developing lasers. They will advise you in your design and realization phase as well as after-sales: **We make market leaders!**

nanoplus DFB lasers on TO66, TO5, TO5.6, c-mount and SM-BTF

WAVELENGTH

760.8 nm

1278.8 nm

1392.0 nm

1512.2 nm

1742.0 nm

2004.0 nm

1560 - 1590 nm

1651 & 1654 nm

1854 & 1877 nm

2330 & 2334 nm

3240 & 3270 nm

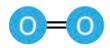
3345 & 3375 nm

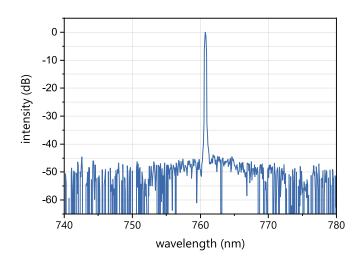
4524 & 4534 nm

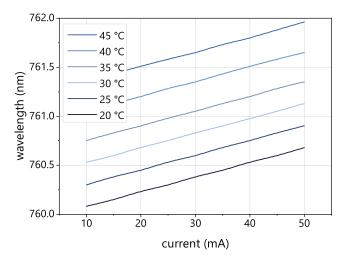
5184 & 5263 nm

4565 nm HP

3345 nm HP







Superior Specifications: 760.8 nm

This data sheet reports performance data of a sample nanoplus DFB laser at 760.8 nm with enhanced specifications. Standard specifications are available at: nanoplus.com/DFB/760nm-830nm. These lasers are particularly suitable for oxygen detection (O₂).

Typical room temperature cw spectrum of a nanoplus DFB laser at 760.8 nm

Typical mode hop free tuning of a nanoplus DFB laser at 760.8 nm by current and temperature

electro-optical characteristics	symbol	unit	min.	typical	max.
operating wavelength (at $T_{op'}$ I_{op})	$\lambda_{\sf op}$	nm		760.8	
optical output power (at λ_{op})	P_{op}	mW		6	
operating current	l _{op}	mA		30	
operating voltage	V_{op}	V		3	
threshold current	I_{th}	mA	5	10	18
side mode suppression ratio	SMSR	dB		> 35	
current tuning coefficient	C	nm / mA	0.010	0.018	0.025
temperature tuning coefficient	C_{\scriptscriptstyleT}	nm / K	0.045	0.054	0.060
operating chip temperature	T_{op}	°C	+20	+25	+40
operating case temperature*	T_{c}	°C	-20	+25	+55
storage temperature*	T_S	°C	-40	+20	+80

packaging

* non-condensing

TO5 with TEC and NTC, black cap, AR coated window

TO56 without TEC or NTC, sealed, window

c-mount without TEC or NTC

butterfly package with TEC and NTC, SM fiber, FC/APC connector

chip on carrier without TEC, with NTC

Technical drawings & accessories are available at: nanoplus.com/packaging

Please contact sales@nanoplus.com for customized specifications, quotes and further questions.

Visit our website for technical notes, application samples or literature referrals.