Products
DFB Laser
ICL
FP Laser
SLD
MIR LED
Packaging
FAQs
Services
Applications
Applications by Gas
Applications by Industry
Tunable Diode Laser Absorption Spectroscopy
Literature
Contact
People
Sales Partners
Meet Us
Directions
About Us
History & Innovations
Quality Management & Sustainability
Cooperations
Management
People
News
Literature
Meet Us
Careers
Entwicklungsingenieur Quantenkaskadenlaser
Technischer Assistent
Vertriebsingenieur
Ausbildungsplatz Mikrotechnologe

DFB Laser Concept

Why nanoplus?

Key Features

nanoplus DFB lasers
  • stable longitudinal and transversal single mode emission
  • precise selection of target wavelength
  • narrow laser line width
  • mode-hop-free wavelength tunability
  • fast wavelength tuning
  • typically > 5 mW output power
  • small size
  • easy usability
  • high efficiency
  • long-term stability
Laser Diode, Interband Cascade Laser & Quantum Cascade Laser

Types of DFB semiconductor lasers

Laser Diode (760 nm - 3000 nm)

I: Bipolar Interband Laser Diodes

In a LD electrons and holes have an optical interband recombination at the p-n junction of a semiconductor diode. This transition has a high energy gap. This is the reason why we reach a shorter wavelength range with these devices.

Interband Cascade Laser (2800 nm - 6 µm)

II: Interband Cascade Lasers type-II-W-QW

In an ICL electrons and holes have an optical interband recombination at the W-shaped quantum well (QW) of the semiconductor material. The energy of this transition is between those of a LD and a QCL. This is the reason why we reach a medium wavelength range with these devices.

Quantum Cascade Laser (6 µm - 14 µm)

III: Quantum Cascade Lasers

In a QCL the valence band (VB) does not play any role for the optical transition. Electrons and holes have an optical intraband recombination within the conductive band (CB) of the semiconductor material. The energy of this transition low. This is the reason why we reach a longer wavelength range with these devices.

References

Papers & Articles

Further reading on Distributed Feedback Lasers

#2 Advanced Gas Sensing Applications Above 3 µm with DFB Laser Diodes;
L. Naehle, L. Hildebrandt, M. Fischer, J. Koeth, Gases & Instrumentation, March/April 2012, pp. 25-28.

#3 Gas monitoring in the process industry using diode laser spectroscopy;
I. Linnerud, P.Kaspersen, T. Jaeger, Appl. Phys. B 67, 1998, pp. 297-305.

#6 Using diode lasers for atomic physics;
C.E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62 (l), 1991, pp. 1-20.

#8 ICLs open opportuneties for mid-IR seinsing;
L. Naehle, L. Hildebrandt, M. Kamp, S. Hoefling, Laser Focus World, May 2013, pp. 70-73.

#9 DFB Lasers Between 760 nm and 16 µm for Sensing Applications;
W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth, Sensors 2010, 10, pp. 2492-2510.

#11 Quantum cascade laser linewidth investigations for high resolution photoacoustic spectroscopy;
M. Germer, M. Wolff, Appl. Opt. 48, 4, 2009, pp. B80-B86.

#12 CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 µm;
A. Farooq,  J.B. Jeffries, R.K. Hanson, Appl. Phys. B 90, 2008, pp. 619-628.

#13 Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 µm wavelength range around room temperature;
L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth and L. Worschech, Electron. Lett. 47, 1, Jan 2011, pp. 46-47.

#14 Evaluation of the Radiation Hardness of GaSbbased Laser Diodes for Space Applications;
I. Esquivias, J.M.G. Tijero, J. Barbero, D. Lopez, M. Fischer, K. Roessner, J. Koeth, RADECS Proceedings 2011, pp. 349-352.

#15 Scanned-wavelength-modulation spectroscopy near 2.5 µm for H2O and temperature in a hydrocarbon-fueled scramjet combustor;
C. S. Goldenstein, I. A. Schultz, R. M. Spearrin, J. B. Jeffries, R.K. Hanson, Appl. Phys. B, 116, 3, Sept 2014, pp 717-727.

#16 Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482 nm;
C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, J. of Quantitative Spectr. & Radiative Transfer 130, 2013, pp. 100–111.

#17 Wavelength-modulation spectroscopy near 2.5 µm for H2O and temperature in high-pressure and -temperature gases;
C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Appl. Phys. B, 116, 3, Sept 2014, pp 705-716.

#18 Monomode Interband Cascade Lasers at 5.2 µm for Nitric Oxide Sensing;
M. von Edlinger, J. Scheuermann, R. Weih, C. Zimmermann, L. Naehle, M. Fischer, J. Koeth, IEEE Phot. Tech. Lett., 26, 5, 2014, pp. 480-482.

#19 Measurements of Mars Methane at Gale Crater by the SAM Tunable Laser Spectrometer on the Curiosity Rover;
C.R. Webster, P.R. Mahaffy, S.K. Atreya, G.J. Flesch, K.A. Farley, 44th Lunar and Planetary Science Conference, March 18-22, 2013, LPI Contribution No. 1719, p.1366.

#20 Interband cascade lasers with room temperature threshold current densities below 100 A/cm2;
R. Weih, M. Kamp, S. Hoefling, Appl. Phys. Lett., 102, 2013, pp. 231123-231123-4.

#21 The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance;
M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, G. Ehret, Appl. Phys. B, 96, 1, July 2009, pp. 201-213.

#22 Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm;
S. Lundqvist, P. Kluczynski, R. Weih, M. von Edlinger, L. Naehle, M. Fischer, A. Bauer, S. Hoefling, J. Koeth, Appl. Opt., 51, 25, 2012, pp. 6009-6013.

#26 Corrugated-sidewall interband cascade lasers with single-mode midwave-infrared emission at room temperature;
C.S. Kim, M. Kim, W.W. Bewley, J.R. Lindle, C.L. Canedy, J. Abell, I. Vurgaftman, J.R. Meyer, Appl. Phys. Lett., 95, 2009, 231103.

#28 In situ combustion measurements of H2O and temperature near 2.5 µm using tunable diode laser absorption;
A. Farooq, J.B Jeffries, R.K Hanson, Meas. Sci. Technol., 19, 2008, 075604, pp. 11.

#30 Kalman filtering real-time measurements of H2O isotopologue ratios by laser absorption spectroscopy at 2.73 µm;
T. Wu, W. Chen, E. Kerstel, E. Fertein, X. Gao, J. Koeth, Karl Roessner, D. Brueckner, Opt. Lett., 35, 5, 2010, pp. 634.636.

#31 QCL based NO Detection;
M. Wolff, J. Koeth, L. Hildebrandt, P. Fuchs; 16th International Conference on Photoacoustic and Photothermal Phenomena.

#32 Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 µm above room temperature for application in tunable diode laser absorption spectroscopy;
A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, A. Garnache, Appl. Opt., 45, 20., pp. 4957-4965.

#33 DFB laser diodes in the wavelength range from 760 nm to 2.5 µm;
J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, A. Forchel, Spectroch. Acta Part A 60, 2004, pp. 3243-3247.

#35 TDLAS-based sensors for in situ measurement of syngas composition in a pressurized, oxygen-blown, entrained flow coal gasifier;
R. Sur, K. Sun, J.B. Jeffries, R.K. Hanson, R.J. Pummill, T. Waind, D.R. Wagner, K.J. Whitty, Appl. Phys. B, 116, 1, 2014, pp. 33-42.

#36 Single mode interband cascade lasers based on lateral metal gratings;
R. Weih, L. Naehle, Sven Hoefling, J. Koeth, M. Kamp, Appl. Phys. Lett., 105, 7, 2014, pp. 071111.

#42 Line shapes of near-infrared DFB and VCSEL diode lasers under the influence of system back reflections;
R. Engelbrecht, B. Lins, P. Zinn, R. Buchtal, B. Schmauss, Appl. Phys. B, 109, 3, Nov. 2012, pp. 441-452.

#44 High sensitivity Faraday rotation spectrometer for hydroxyl radical detection at 2.8 µm;
W. Zhao, G. Wysocki, W. Chen, W. Zhang, Appl. Phys. B, 109, 3, Nov. 2012, pp. 511-519.

#45 Measurements of CO2 in a multipass cell and in a hollow-core photonic bandgap fiber at 2 µm;
J. A. Nwaboh, J. Hald, J. K. Lyngsø, J. C. Petersen, O. Werhahn, Appl. Phys. B, 109, 3, Nov. 2012, pp. 187-194.

#48 Absolute, spatially resolved, in situ CO profiles in atmospheric laminar counter-flow diffusion flames using 2.3 µm TDLAS;
S. Wagner, M. Klein, T. Kathrotia, U. Riedel, T. Kissel, A. Dreizler, V. Ebert, Appl. Phys. B, 109, 3, Nov. 2012, pp. 533-540.

#50 Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring;
J. J. Scherer, J. B. Paul, H. J. Jost, Marc L. Fischer, Appl. Phys. B, 109, 3, Nov. 2012, pp. 271-277.

#51 Noninvasive monitoring of gas in the lungs and intestines of newborn infants using diode lasers: feasibility study;
P. Lundin, E.K. Svanberg, L. Cocola, M.L. Xu, G. Somesfalean, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, S. Svanberg, J. of Biomed. Opt., 18(12), Dec. 2013, 127005.

#52 Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy;
L. Hildebrandt, R. Knispel, S. Stry, J.R. Sacher, F. Schael, Appl. Opt., 42, No. 12, 2003, pp. 2110-2118.

#53 CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell;
K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, F.K. Tittel, Appl. Phys. B, 112, 4, Sept. 2013, pp. 461-465.

#54 Demonstration of the self-mixing effect in interband cascade lasers;
K. Bertling, Y.L. Lim, T. Taimre, D. Indjin, P. Dean, R. Weih, S. Hoefling, M. Kamp, M. von Edlinger, J. Koeth, A.D. Rakic, Appl. Phys. Lett., 103, 2013, 231107.

#55 Photonic Crystal Laser Based Gas Sensor;
M. Wolff, H. Bruhns, J. Koeth, W. Zeller, L. Naehle, Chapter 4 in "Optical Sensors - New Developments and Practical Applications", book edited by M. Yasin, S.W. Harun, H. Arof, ISBN 978-953-51-1233-4, March 19, 2014.

#56 Widely tunable quantum cascade lasers with coupled cavities for gas detection;
P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Hoefling, L. Worschech, A. Forchel, App. Phys. Lett., 97, 2010, 181111.

#57 Distributed feedback quantum cascade lasers at 13.8 µm on indium phosphide;
P. Fuchs, J. Semmel, J. Friedl, S. Hoefling, J. Koeth, L. Worschech, A. Forchel, Appl. Phys. Lett. 98, 2011, 211118.

#59 Semiconductor laser damage due to human-body-model electrostatic discharge;
Y. Twu, L.S. Cheng, S.N.G. Chu, F.R. Nash, K.W. Wang, P. Parayanthal, J. Appl. Phys. 74 (3), Aug. 1993, 1510-1520.

#60 Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector;
P. Fuchs, J. Friedl, S. Hoefling, J. Koeth, A. Forchel, L. Worschech, M. Kamp, Opt. Expr., 20, 4, 2012, pp. 3890-3897.

#61 Demonstration of an Ethane Spectrometer for Methane Source Identification;
T.I. Yacovitch, S.C. Herndon, J.R. Roscioli, C. Floerchinger, R.M. McGovern, M. Agnese, G. Petron, J. Kofler, C. Sweeney, A. Karion, S.A. Conley, E.A. Kort, L. Naehle, M. Fischer, L. Hildebrandt,.J. Koeth, J.B. McManus, D.D. Nelson, M.S. Zahniser, C.E. Kolb, Environ. Sci. Technol., 48, 2014, 8028-8034.

#62 High-sensitivity interference-free diagnostic for measurement of methane in shock tubes;
R. Sur, S. Wang, K. Sun, D. F. Davidson, J. B. Jeffries, R. K. Hanson, J. of Quant. Spectrosc. and Rad. Transfer, Vol. 156, May 2015, pp. 80–87.

#63 Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits;
C. Wang and P. Sahay, Sensors 2009, 9, 8230-8262.

#64 Interband Cascade Lasers - Topical Review;
I. Vurgaftman, R. Weih, M. Kamp, C.L. Canedy, C.S. Kim, M. Kim, W.W. Bewley, C.D. Merritt, J. Abell, S. Hoefling, Phys. D: Appl. Phys. 48, 2015, pp. 123001-12017.

#65 H2O temperature sensor for low-pressure flames using tunable Diode laser Absorption near 2.9 µm;
S. Li, A. Farooq, R.K. Hanson, Meas. Sci. Technol., 22, 2011, pp. 125301-125311.

#79 InAs-based distributed feedback interband cascade lasers;
M. Dallner, J. Scheuermann, L. Nähle, M. Fischer, J. Koeth, S. Höfling, M. Kamp, Appl. Phys. Lett. 107, 2015, 181105.

#80 Single-mode interband cascade lasers emitting below 2.8 μm;
J. Scheuermann, R. Weih, M. v. Edlinger, L. Nähle, M. Fischer, J. Koeth, M. Kamp, S. Höfling, Appl. Phys. Lett. 106, 2015, 161103.

#81 Dynamic spectral characteristics measurement of DFB interband cascade laser under
injection current tuning
;
Z. Du, G. Luo, Y. An, J. Li, Appl. Phys. Lett. 109, 2016, 011903.

# 85 Frequency modulation characteristics for interband cascade lasers emitting at 3 µm;
J. Li, Z. Du, Y. An, Appl. Phys. B, 2015, 121:7–17.

#100 Multiheterodyne spectroscopy using interband cascade lasers;
L. A. Sterczewski, J. Westberg, C. L. Patrick, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, C. D. Merritt, I. Vurgaftman, J. R. Meyer and G. Wysocki, Opt. Eng. 57(1), 011014, Jan. 2018.

Further questions?

Need help?

Contact us

Do you want further advice? Our experts will assist you.