Products
DFB Laser
ICL
FP Laser
SLD
MIR LED
Packaging
FAQs
Services
Applications
Applications by Gas
Applications by Industry
Tunable Diode Laser Absorption Spectroscopy
Literature
Contact
People
Sales Partners
Meet Us
Directions
About Us
History & Innovations
Quality Management & Sustainability
Cooperations
Management
People
News
Literature
Meet Us
Careers
PhD positions
Technischer Assistent
Vertriebsingenieur
Ausbildungsplatz Mikrotechnologe

2800 nm - 4000 nm Distributed Feedback Laser

Discover Our Wavelengths

Distributed Feedback Laser

2800 nm - 4000 nm Distributed Feedback Laser

Select your target wavelength at any wavelength between 2800 nm and 4000 nm. The table below presents typical specifications, available mountings as well as application references & further reading.

Specifications
Mountings & Accessories
Applications
Papers & Links
Specifications
parameters
symbol
unit
minimum
typical
maximum
parameters

operating wavelength (at Top, Iop)

symbol

λop

unit

nm

minimum
typical

0.1 nm

maximum
parameters

optical output power (at λop)

symbol

Pop

unit

mW

minimum
typical

10

maximum
parameters

operating current

symbol

Iop

unit

mA

minimum
typical
maximum

120

parameters

operating voltage

symbol

Vop

unit

V

minimum
typical

5

maximum
parameters

threshold current

symbol

Ith

unit

mA

minimum

15

typical

30

maximum

50

parameters

side mode suppression ratio

symbol

SMSR

unit

dB

minimum
typical

> 35

maximum
parameters

current tuning coefficient

symbol

CI

unit

nm / mA

minimum
typical

0.10

maximum
parameters

temperature tuning coefficient

symbol

CT

unit

nm / K

minimum
typical

0.35

maximum
parameters

operating chip temperature

symbol

Top

unit

°C

minimum

+10

typical

+20

maximum

+50

parameters

operating case temperature (non-condensing)

symbol

TC

unit

°C

minimum

-20

typical

+25

maximum

+50

parameters

storage temperature (non-condensing)

symbol

TS

unit

°C

minimum

-30

typical

+20

maximum

+70

Mountings & Accessories
SM-BTF - our fiber-coupled workhorse
  • availability: 760 nm - 5500 nm
  • TEC: integrated TEC
  • NTC: integrated NTC
  • plug&play: fiber-coupled beam
  • size: large footprint
  • costs: higher cost than free space
TO66 - our workhorse for ICLs
  • availability: 2800 nm - 6500 nm
  • TEC: integrated large TEC
  • NTC: integrated NTC
  • cap: AR coated cap (optional)
  • window: AR coated window (optional)
  • plug&play: collimation required
  • size: small footprint
  • costs: low cost
chip on heatspreader - high-end OEM integration
  • availability: 760 nm - 6000 nm
  • TEC: no TEC
  • NTC: integrated NTC
  • cap: NA
  • window: NA
  • plug&play: collimation required
  • size: smallest footprint
  • costs: low cost
Heatsink for TO5 / TO66
  • availability: 760 nm - 6500 nm
  • NTC: integrated (optional)
  • heat distribution: warranted
  • connectors: for laser diode driver & temperature controller
  • posts: M6 thread for optical table
  • cage system: standard
  • collimation: none
Lens on cap
  • availability: 1850 nm - 5500 nm
  • heat distribution: none, use separate heatsink
  • connectors: TO66 connectors only
  • posts: none, use separate heatsink
  • cage system: none, use separate heatsink
  • collimation: high-end collimation, divergence < 4 mrad
Applications
Gas Detection
2800 nm - 4000 nm

Carbon dioxide, nitric oxide, water vapour and most hydrocarbons, like methane, acetylene, formaldehyde and ethane have their strongest absorption features between 3000 nm and 6500 nm.

[ 189 , 188 , 187 , 185 , 184 , 183 , 178 ]
Papers & Links
# 2 Advanced Gas Sensing Applications Above 3 µm with DFB Laser Diodes
L. Naehle, L. Hildebrandt, M. Fischer, J. Koeth, Gases & Instrumentation, March/April 2012, pp. 25 - 28,
# 5 DFB lasers exceeding 3 µm for industrial applications
L. Naehle, L. Hildebrandt, Laser+Photonics, 2012, pp. 78-80,
# 7 DFB laser diodes expand hydrocarbon sensing beyond 3 µm
L. Hildebrandt, L. Naehle, Laser Focus World, January 2012, pp. 87-90,
# 8 ICLs open opportunities for mid-IR sensing
L. Naehle, L. Hildebrandt, M. Kamp, S. Hoefling, Laser Focus World, May 2013, pp. 70-73,
# 9 DFB Lasers Between 760 nm and 16 µm for Sensing Applications
W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth , Sensors, 10, 2010, pp. 2492-2510,
# 13 Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 µm wavelength range around room temperature
L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth and L. Worschech , Electron. Lett. 47, 1, Januar 2011, pp. 46-47.,
# 22 Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm
S. Lundqvist, P. Kluczynski, R. Weih, M. von Edlinger, L. Naehle, M. Fischer, A. Bauer, S. Hoefling, J. Koeth, Appl. Opt., , 51, 25, 2012, pp. 6009-6013.,
# 26 Corrugated-sidewall interband cascade lasers with single-mode midwave-infrared emission at room temperature;
C.S. Kim, M. Kim, W.W. Bewley, J.R. Lindle, C.L. Canedy, J. Abell, I. Vurgaftman, J.R. Meyer , Appl. Phys. Lett., 95, 2009, 231103.,
# 36 Single mode interband cascade lasers based on lateral metal gratings
R. Weih, L. Naehle, Sven Hoefling, J. Koeth, M. Kamp , Appl. Phys. Lett., 105,7, 2014, pp. 071111.,
# 43 Chemical analysis of surgical smoke by infrared laser spectroscopy
Michele Gianella, Markus W. Sigrist , Appl. Phys. B, 109, 3, November 2012, pp. 485-496.,
# 53 CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell
K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, F.K. Tittel, Appl. Phys. B, 112, 4. September 2013, pp. 461-465.,
# 54 Demonstration of the self-mixing effect in interband cascade lasers
K. Bertling, Y.L. Lim, T. Taimre, D. Indjin, P. Dean, R. Weih, S. Hoefling, M. Kamp, M. von Edlinger, J. Koeth, A.D. Rakic, Appl. Phys. Lett., 103, 2013, 231107,
# 61 Demonstration of an Ethane Spectrometer for Methane Source Identification
T.I. Yacovitch, S.C. Herndon, J.R. Roscioli, C. Floerchinger, R.M. McGovern, M. Agnese, G. Petron, J. Kofler, C. Sweeney, A. Karion, S.A. Conley, E.A. Kort, L. Naehle, M. Fischer, L. Hildebrandt,.J. Koeth, J.B. McManus, D.D. Nelson, M.S. Zahniser, C.E. Kolb, Environ. Sci. Technol., 48, 2014, 8028-8034.,
# 62 High-sensitivity interference-free diagnostic for measurement of methane in shock tubes
R. Sur, S. Wang, K. Sun, D. F. Davidson, J. B. Jeffries, R. K. Hanson, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 156, May 2015, pp. 80-87,
# 64 Interband Cascade Lasers - Topical Review
I. Vurgaftman, R. Weih, M. Kamp, C.L. Canedy, C.S. Kim, M. Kim, W.W. Bewley, C.D. Merritt, J. Abell, S. Hoefling, Phys. D: Appl. Phys., 48, 2015, pp. 123001-12017.,
# 67 New Opportunities in Mid-Infrared Emission Control
P. Geiser, Sensors, 2015, pp. 22724-22736.,
# 74 Laser absorption diagnostic for measuring acetylene concentrations in shock tubes
I. Stranic, R. K. Hanson pp. 58-65, Journal of Quantitative Spectroscopy and Radiative Transfer, 142, July 2014, pp. 58 - 65,
# 75 Interband cascade laser sources in the mid-infrared for green photonics
J. Koeth, M. von Edlinger, J. Scheuermann, S. Becker, L. Nähle, M. Fischer, R. Weih, M. Kamp, S. Höfling, , Novel In-Plane Semiconductor Lasers , XV, 9767, 10th March 2016, 976712,
# 77 Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing
L. Dong, F. K. Tittel, C. Li, N. P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, R. J. Griffin , Optics Express, Vol. 24, Issue 6, 2016, pp. A528-A535.,
# 78 Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell
L. Dong,Y. Yu,.C. Li, S. So, F. Tittel, Optics Express, Vol. 23, Issue 15, 2015, pp. 19821-19830.,
# 80 Single-mode interband cascade lasers emitting below 2.8 μm
J. Scheuermann, R. Weih, M. v. Edlinger, L. Nähle, M. Fischer, J. Koeth, M. Kamp, S. Höfling , Appl. Phys. Lett. , 106, 2015, 161103.,
# 81 Dynamic spectral characteristics measurement of DFB interband cascade laser under injection current tuning
Z. Du, G. Luo, Y. An, J. Li, Appl. Phys. Lett., 109, 2016, 011903.,
# 82 Ppb-level mid-infrared ethane detection based on three measurement schemes using a 3.34 μm continuous-wave interband cascade laser
C. Li, C. Zheng, L. Dong, W. Ye, F. K. Tittel, Y. Wang , Appl. Phys. B, July 2016, 122:185.,
# 83 Mid-infrared surface plasmon polariton chemical sensing on fiber-coupled ITO coated glass
J. Martínez, A. Ródenas, M. Aguiló, T. Fernandez, J. Solis, F. Díaz , Optics Letters, Vol. 41, No. 11, 1th June 2016, pp. 2493 - 2496.,
# 85 Frequency modulation characteristics for interband cascade lasers emitting at 3 µm
J. Li, Z. Du, Y. An, Appl. Phys. B, 2015, 121:7–17.,
# 86 Detection of methyl mercaptan with a 3393‑nm distributed feedback interband cascade laser
Z. Du, W. Zhen, Z. Zhang, J. Li, N. Gao, Appl. Phys. B, 2016, 122 : 100,
# 87 Optical‑feedback cavity‑enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis
L. Richard, I. Ventrillard, G. Chau, K. Jaulin, E. Kerstel, D. Romanini , Appl. Phys. B, 2016, 122:247.,
# 89 Mars methane detection and variability at Gale crater
C. R. Webster, P. R. Mahaffy, S. K. Atreya, G. J. Flesch, M. A. Mischna, P.-Y. Meslin, K. A. Farley, P. G. Conrad,L. E. Christensen, A. A. Pavlov, J. Martín-Torres, M.-P. Zorzano, T. H. McConnochie, T. Owen, J. L. Eigenbrode, D. P. Glavin, A. Steele, C. A. Malespin, P. Douglas Archer Jr., B. Sutter, P. Coll, C. Freissinet, C. P. McKay, J. E. Moores, S. P. Schwenzer, J. C. Bridges, R. Navarro-Gonzalez, R. Gellert, M. T. Lemmon , the MSL Science Team, Science, Vol.347, Issue 6220, 23. Januar 2015 , pp. 415-417.,
# 90 Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 µm interband cascade laser
K. M. Manfred, G. A. D. Ritchie, N. Lang, J. Roepcke, J. H. van Helden , Appl. Phys. Lett. 106, 2015, 221106.,
# 92 Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy
Ch. Zheng, W. Ye, N. P. Sanchez, Ch. Li, L. Dong, Y. Wang, R. J. Griffin, F. K. Tittel , Sensors and Actuators B: Chemical, Vol. 244, June 2017, 365–372.,
# 95 Harsh-environment-resistant OH-vibrations-sensitive mid-infrared water-ice photonic sensor;
J. Martínez, A. Ródenas, A. Stake, M. Traveria, M. Aguiló, J. Solis, R. Osellame, T. Tanaka, B. Berton, S. Kimura, N. Rehfeld, F. Díaz , Adv. Mater. Technol., 2017, 1700085.,
# 100 Multiheterodyne spectroscopy using interband cascade lasers
L. A. Sterczewski, J. Westberg, C. L. Patrick, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, C. D. Merritt, I. Vurgaftman, J. R. Meyer and G. Wysocki, Opt. Eng., 57(1), Januar 2018, 011014,
# 101 Single-mode interband cascade laser multiemitter structure for two-wavelength absorption spectroscopy;
Scheuermann, R. Weih, S. Becker, M. Fischer, J. Koeth, S. Höfling, Opt. Eng., 57 (1), September 2017, 011008,
# 102 Laser detection
L. Hildebrandt, Hydrocarbon Engineering, Februar 2018,
# 103 Detection of ethanol using a tunable interband cascade laser at 3.345 μm
H. Gao, L. Xie, P. Gong et al. , Photonic Sensors, 2018, pp. 1 - 7,
# 105 Design and performance of a dual-laser instrument for multiple isotopologues of carbon dioxide and water
J. B. McManus, D. D. Nelson and M. S. Zahniser , Optics Express, Vol.23, Issue 5, 2015, pp. 6569-6586.,
# 106 Recent progress in laser‑based trace gas instruments: performance and noise analysis
J. B. McManus, M. S. Zahniser, D. D. Nelson et. al., Appl. Phys. B, 2015, 119: 203.,
# 107 Interband cascade laser-based ppbv-level mid-infrared methane detection using two digital lock-in amplifier schemes
F. Song, C. Zheng, D. Yu, Y. Zhou, W. Yan, W. Ye, Y. Zhang, Y. Wang, F. K. Tittel , Appl. Phys. B, 2018, 124:51.,
# 108 Dual-feedback mid-infrared cavity-enhanced absorption spectroscopy for H2CO detection using a radio-frequency electricallymodulated interband cascade laser
Q. He, C. Zheng, M. Lou, W. Ye, Y. Wang, F. K. Tittel , Opt. Expr, Vol.26, No.12, 2018, p. 15436.,
# 109 Performance enhancement of methane detection using a novel self-adaptive mid-infrared absorption spectroscopy technique
F. Song, C. Zheng, W. Yan, W. Ye, Y. Zhang, Y. Wang, F. K. Tittel, IEEE Phot. Journ., Vol.10, No.6, December 2018,
# 114 Interband cascade laser absorption sensor for real-time monitoring of formaldehyde filtration by a nanofiber membrane
C. Yao, Z. Wang, Q. Wang, Y. Bian, C. Chen, L. Zhang, W. Ren , App. Optics, Vol.57, No.27, 20.September 2018, 8005.,
# 119 Interband cascade laser based quartz-enhanced photoacoustic sensor for multiple hydrocarbons detection
A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, V. Spagnolo, Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV , 26th January 2018, 105400C,
# 122 A streamlined approach to hybrid-chemistry modeling for a low cetane-number alternative jet fuel
N. H. Pinkowski, Y. Wang , S. J. Cassady , D. F. Davidson , R. K. Hanson , Combustion and Flame, Vol.208, October 2019, pp. 15-26.,
# 123 Multi-wavelength speciation of high-temperature 1-butene pyrolysis
N. H. Pinkowski, S. J. Cassady, D. F. Davidson, R. K. Hanson, Fuel, Vol. 244, 15th May 2019, pp. 269-281.,
# 124 Tomographic laser absorption imaging ofcombustion species and temperature in the mid-wave infrared
C. Wei, D. I. Pineda, C. S. Goldenstein, R. M. Spearrin, Opt. Exp., Vol. 26, Iss. 16, 2018, pp. 20944 - 20951.,
# 125 Time-resolved laser absorption imaging of ethane at 2 kHz in unsteady partially premixed flames
K. K. Schwarm, C. Wei, D. I. Pineda, R. M. Spearrin, Appl. Opt., Vol. 58, Iss. 21, Juli 2019, pp. 5656 - 5662.,
# 126 Contrast enhancement of surface layers with fast middle-infrared scanning
T. Kümmel, T. Teumer, P. Dörnhofer, F.-J. Methner, B. Wängler, M. Rädle, Heliyon, Vol. 5, Iss. 9, September 2019,
# 128 Quartz-enhanced photoacoustic spectroscopy for hydrocarbon trace gas detection and petroleum exploration
A. Sampaoloa, G. Mendunib,P. Patimiscoa, M. Giglioa, V. M.N. Passaroc, L. Donga, H. Wua, F. K. Tittel, V. Spagnoloa, , Fuel, Vol.277, 2020,
# 129 Sub-ppb-level CH4 detection by exploiting a low-noise differential photoacoustic resonator with a room-temperature interband cascade laser
H. Zhen, Y. Liu, H. Lin, R. Kan, P. Patimisco, A. Sampaolo, M. Giglio, W. Zhu, J. Yu, F. K. Tittel, V. Spagnolo, Z. Chen, Opt. Expr., Vol. 28, Iss. 13, 2020, p. 19446.,
# 130 Simple electrical modulation scheme for laser feedback imaging
K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. v. Edlinger, J. Koeth, Aleksandar D. Rakic, IEEE Sens. Jour., Vol.16, No. 7, April, 1, 2016, pp. 1937-1942.,
# 131 Unveiling quantum-limited operation of interband cascade lasers
S. Borri , M. Siciliani de Cumis , S. Viciani , F. D’Amato, P. De Natale, APL Phot., Vol.5, Iss.3, 2020, 036101,
# 132 Light and microwaves in laser frequency combs: an interplay of spatio-temporal phenomena
M. Piccardo, D. Kazakov, B. Schwarz, P. Chevalier, A. Amirzhan, Y. Wang, F. Xie, K. Lascola, S. Becker, L. Hildebrandt, R. Weih, A. Belyanin, F. Capasso, San Jose, CA, USA, 2019, , 2019 Conference on Lasers and Electro-Optics (CLEO), 2019, pp. 1-2.,
# 134 Deep neural network inversion for 3D laser absorption imaging of methane in reacting flows
C. Wei, K. K. Schwarm, D. I. Pineda, R. M. Spearrin, , Opt. Lett, Vol.45, No.8, 2020, p. 2447.,
# 135 Interband cascade laser absorption of hydrogen chloride for high-temperature thermochemical analysis of fire-resistant polymer reactivity
D. I. Pineda, J. L. Urban, R. M. Spearrin,, , Appl. Opt., Vol.59, No.7, 2020, pp. 2141-2148.,
# 136 Temperature-dependent line mixing in the R-branch of the v3 band of methane
J. Li, A. P. Nair, K. K. Schwarm, D. I. Pineda, R. M. Spearrin, Journal of Quantitative Spectroscopy & Radiative Transfer, No.255, 2020, 107271.,
# 140 Interband cascade laser arrays for simultaneous and selective analysis of C1–C5 hydrocarbons in petrochemical industry
J. Scheuermann, P. Kluczynski, K. Siembab, M. Straszewski, J. Kaczmarek, R. Weih, M. Fischer, J. Koeth, A. Schade, S. Höfling, Appl. Spectrosc, January 2021, 2021,
# 141 Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration
H. Wu, L. Dong, X. Yin, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, Sensors and Actuators B: Chemical, Vol.297, 2019, 126753.,
# 142 Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser
A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, V. Spagnolo, Sensors and Actuators B: Chemical, Vol. 282, 2019, pp. 952-960.,
# 143 Optical detection of formaldehyde in air in the 3.6 µm range
M. Winkowski, T. Stacewicz, , Biomed Opt. Expr.,, Dezember 2020, 2020, pp. 7019–7031.,
# 144 Accurate analysis of HCl in biomethane using laser absorption spectroscopy and ion-exchange chromatography
J. A. Nwaboh, H. Meuzelaar, J. Liu, S. Persijn, J. Li, A. M. H. van der Veen, N. Chatellier, A. Papin, Z. Qu, O. Werhahna, V. Eberta, Analyst, Iss. 4, 2021.,
# 151 The interband cascade laser
J. R. Meyer, W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, I. Vurgaftman, Photonics, Vol. 7, No. 3 (75), 2020,
# 158 Optical Wireless Link Operated at the Wavelength of 4.0 µm with Commercially Available Interband Cascade Laser
J. Mikołajczyk, R. Weih, M. Motyka, Sensors, Vol. 21, 2021,
# 159 Direct absorption spectroscopy baseline fitting for blended absorption features
J. M. Weisberger, J. P. Richter, R. A. Parker, P. E. DesJardin, Appl. Optics, 2018,
# 162 Methane leak detection by tunable laser spectroscopy and mid-infrared imaging
T. Strahl, J. Herbst, A. Lambrecht, E. Maier, J. Steinebrunner, J. Wöllenstein , Appl. Optics, Vol. 60, No. 15, 2021, C68-C75,
# 163 Towards a dTDLAS‑Based Spectrometer for Absolute HCl Measurements in Combustion Flue Gases and a Better Evaluation of Thermal Boundary Layer Effects
Z. Qu, J. Nwaboh, O. Werhahn, V. Ebert, Flow, Turbulence and Combustion, 106, 2021, 533 - 546,
# 165 Near-Surface Carbon-Dioxide Tunable Diode Laser Absorption Spectroscopy Concentration Measurements in Hypervelocity Flow
J. M. Weisberger, P. E. DesJardin, M. MacLean, R. Parker, Z. Carr, J. of Spacecraft and Rockets, Vol. 52, No. 6, 2015, 1551 - 1562,
# 166 Mid-infrared hyperchaos of interband cascade lasers
Y. Deng, ZF. Fan, BB. Zhao et al. , Light Sci. Appl., 11, 2022,
# 174 Dual-comb optical activity spectroscopy for the analysis of vibrational optical activity induced by external magnetic field
D. Peng, C. Gu, Z. Zuo, Y. Di,X. Zou, L. Tang, L. Deng1, D. Luo1, Y. Liu, W. Li, Nat. Commun., 14, 2023, 883,
# 176 Photoacoustic methane detection inside a MEMS microphone
T. Strahl, J. Steinebrunner, C. Weber, J. Wöllenstein, K. Schmitt, Photoacoustics, 29, 2023, 100428,
# 177 Distributed Feedback Interband Cascade Laser Based Laser Heterodyne Radiometer for Column Density of HDO and CH4 Measurements at Dunhuang, Northwest of China
X. Lu, Y. Huang, P. Wu, D. Liu, H. Ma, G. Wang, Z. Cao, Remote Sens., 14(6), 2022, 1489,
# 178 Quartz-Enhanced Photoacoustic Sensors for Detection of Eight Air Pollutants
R. De Palo, A. Elefante, G. Biagi, F. Paciolla, R. Weih, V. Villada, A. Zifarelli, M. Giglio, A. Sampaolo, V. Spagnolo, P. Patimisco, Adv. Phot. Res., Vo. 4, Iss. 6, 2023,
# 180 Rovibrational Polaritons in Gas-Phase Methane
A. D. Wright, J. C. Nelson, M. L. Weichman, J. Am. Chem. Soc., 145, 10, 2023, 5982–5987,
# 182 Quantitative volumetric laser absorption imaging of methane and temperature in flames utilizing line-mixing effects
C. Wei, K. K. Schwarm, D. I. Pineda, R. M. Spearrin, Proc. Comb. Inst., Vol. 39, Iss. 1, 2023, 1229-1237,
# 183 High-temperature absorption cross-sections and interference-immune sensing method for formaldehyde near 3.6-μm
N. M. Kuenning, I. C. Sanders, N. Q. Minesi, D. I. Pineda, R. M. Spearrin, J. Quant. Spec. Rad. Tr., Vol. 309, 2023, 108690,
# 184 Methyl methacrylate thermal decomposition: Modeling and laser spectroscopy of species time-histories behind reflected shock waves
I. C. Sanders, N. M. Kuenning, N. Q. Minesi, D. I. Pineda, R. M. Spearrin, Fuel, Vol. 335, 2023, 126846,
# 185 Comparison of photoacoustic spectroscopy and cavity ring-down spectroscopy for ambient methane monitoring at Hohenpeißenberg
M. Müller, S. Weigl, J. Müller-Williams, M. Lindauer, T. Rück, S. Jobst, R. Bierl, and F.-M. Matysik, Atmos. Meas. Tech., 16, 2023, 4263–4270,
# 187 Characterizing a sensitive compact mid-infrared photoacoustic sensor for methane, ethane and acetylene detection considering changing ambient parameters and bulk composition (N2, O2 and H2O)
J. Pangerl, M. Müller, T. Rück, S. Weigl, R. Bierl, Sens. Actuators B Chem., 352, 2022, 130962,
# 188 An Algorithmic Approach to Compute the Effect of Non-Radiative Relaxation Processes in Photoacoustic Spectroscopy
M. Müller, T. Rück, S. Jobst, J. Pangerl, S. Weigl, R. Bierl, F.-M. Matysik, Photoacoustics, 26, 2022, 100371,
# 189 Digital Twin of a photoacoustic trace gas sensor for monitoring methane in complex gas compositions
M. Müller, T. Rück, S. Jobst, J. Pangerl, S. Weigl, R. Bierl, F.-M. Matysik, Sens. Actuators B Chem., 378, 2023, 133119,

Optical properties

nanoplus distributed feedback lasers show outstanding spectral, tuning and electrical properties.

Spectrum 3270 nm DFB

Typical spectrum of a nanoplus 3270 nm distributed feedback interband cascade laser

Tuning 3270 nm DFB

Typical mode hop free tuning of a nanoplus 3270 nm distributed feedback interband cascade laser

PI Curve 3270 nm DFB

Typical power, current and voltage characteristics of a nanoplus 3270 nm distributed feedback interband cascade laser

Learn more

Product Brief

More information

nanoplus uses a unique and patented technology for DFB laser manufacturing. We apply a lateral metal grating along the ridge waveguide, which is independent of the material system. Read more about our patented distributed feedback technology.

Request for quotation

Your Requirement

Request for quotation

Send your message