Products
DFB Laser
FP Laser
SLD
MIR LED
Interband Cascade Laser
Packaging Options
FAQs
Services
Applications
Applications by Gas
Applications by Industry
Tunable Diode Laser Absorption Spectroscopy
Literature
Contact
People
Sales Partners
Meet Us
Directions
About
History & Innovations
Quality Management & Sustainability
Cooperations
Management
People
News
Literature
Meet Us
Careers
Ausbildungsplatz Mikrotechnologe
Laborhilfskraft
Systemadministrator

1651 nm & 1654 nm TOP Wavelength

Discover Our Wavelength

Distributed Feedback Laser

1651 nm & 1654 nm TOP Wavelength

DFB laser diodes at 1651 nm and 1654 nm are used for methane detection. Please have a look at the key features, specifications and applications.

Specifications
Mountings & Accessories
Applications
Papers & Links
Specifications
parameters
symbol
unit
minimum
typical
maximum
parameters

operating wavelength (at Top, Iop)

symbol

λop

unit

nm

minimum
typical

1651 nm & 1654 nm

maximum
parameters

optical output power (at λop)

symbol

Pop

unit

mW

minimum
typical

8

maximum
parameters

operating current

symbol

Iop

unit

mA

minimum
typical

70

maximum
parameters

operating voltage

symbol

Vop

unit

V

minimum
typical

2

maximum
parameters

threshold current

symbol

Ith

unit

mA

minimum

10

typical

20

maximum

30

parameters

side mode suppression ratio

symbol

SMSR

unit

dB

minimum
typical

> 35

maximum
parameters

current tuning coefficient

symbol

CI

unit

nm / mA

minimum

0.008

typical

0.012

maximum

0.015

parameters

temperature tuning coefficient

symbol

CT

unit

nm / K

minimum

0.10

typical

0.11

maximum

0.14

parameters

operating chip temperature

symbol

Top

unit

°C

minimum

+20

typical

+25

maximum

+45

parameters

operating case temperature (non-condensing)

symbol

TC

unit

°C

minimum

-20

typical

+25

maximum

+55

parameters

storage temperature (non-condensing)

symbol

TS

unit

°C

minimum

-40

typical

+20

maximum

+80

Specifications
Heatsink for TO5 with collimation
  • Availability: 760 nm - 1850 nm
  • heat distribution: warranted
  • connectors: for laser diode driver & temperature controller
  • posts: M6 thread for optical table
  • cage system: standard
  • collimation: collimation with up to 40 % power loss
Heatsink for TO5 / TO66
  • Availability: 760 nm - 6500 nm
  • heat distribution: warranted
  • connectors: for laser diode driver & temperature controller
  • posts: M6 thread for optical table
  • cage system: standard
  • collimation: none
chip on heatspreader - high-end OEM integration
  • Availability: 760 nm - 6000 nm
  • TEC: no TEC
  • NTC: integrated TEC
  • cap: NA
  • window: NA
  • plug&play: collimation required
  • size: smallest footprint
  • costs: low cost
c-mount - basic OEM integration
  • Availability: 760 nm - 3000 nm
  • TEC: no TEC
  • NTC: no NTC
  • cap: NA
  • window: NA
  • plug&play: collimation required
  • size: low cost
PM-BTF - high-end fiber coupling
  • Availability: 1064 nm - 2050 nm
  • TEC: integrated TEC
  • NTC: integrated NTC
  • plug&play: fiber-coupled beam
  • size: large footprint
  • costs: higher costs than free space
SM-BTF - our fiber-coupled workhorse
  • Availability: 760 nm - 2360 nm
  • TEC: integrated TEC
  • NTC: integrated NTC
  • plug&play: fiber-coupled beam
  • size: large footprint
  • costs: higher cost than free space
TO56 - the absolute basic
  • Availability: 760 nm - 3000 nm
  • TEC: no TEC
  • NTC: no NTC
  • cap: uncoated cap (optional)
  • window: uncoated window (optional)
  • plug&play: collimation required
  • size: small footprint
  • costs: low cost
TO5 - our workhorse
  • Availability: 760 nm - 3000 nm
  • TEC: integrated TEC
  • NTC: integrated NTC
  • cap: AR coated cap (optional)
  • window: AR coated window (optional)
  • plug&play: collimation required
  • size: small footprint
  • costs: low cost
Mountings & Accessories
CH4
Emission control of greenhouse gases: CH4

Greenhouse gas effects and climate change have triggered global emission monitoring of pollutants like methane. Methane is one of the Earth’s most important atmospheric gases. It is, to a large extend, responsible for the accelerating greenhouse effect. The global warming potential of methane is about 30 times higher than that of CO2 based on a 100 year scale. Studies are executed on behalf of the US Environmental Protection Agency to quantify the methane emissions caused by the increased natural gas exploration and production in the US.

[ 162 , 146 , 142 , 141 , 129 , 128 , 119 , 109 , 107 , 92 , 61 ]
CH4
Leakage control in gas pipelines: CH4

Leaks of CH4 may cause dangerous situations and are hard to locate precisely. Hence, maintenance of underground pipelines produces high costs. CH4 leaks are also an important source for greenhouse gases. With TDLS a strong tool is available to manufacture portable leak detectors.

[ 162 ]
CH4
Combustion control in integrated gasification fuel cell cycles: CH4

Methane content of syngas is controlled to improve combustion efficiency of integrated gasification fuel cell cycles.

[ 35 ]
CO2 and CH4
Combustion control in high temperature processes: CO2 and CH4

Continuous monitoring of contents like CO2 or CH4 concentrations is essential for the efficiency of high-temperature processes in e. g. incinerators, furnaces or petrochemical refineries. Managing the CO2 content in combustion processes simultaneously reduces greenhouse gas emissions. This is also relevant for energy generating industries like coal burning power plants.

[ 154 , 124 , 121 , 115 , 112 , 111 , 96 , 94 , 62 , 45 , 40 , 35 , 12 ]
Papers & Links
# 5 DFB lasers exceeding 3 µm for industrial applications
L. Naehle, L. Hildebrandt, Laser+Photonics, 2012, pp. 78-80,
# 7 DFB laser diodes expand hydrocarbon sensing beyond 3 µm
L. Hildebrandt, L. Naehle, Laser Focus World, January 2012, pp. 87-90,
# 9 DFB Lasers Between 760 nm and 16 µm for Sensing Applications
W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth , Sensors, 10, 2010, pp. 2492-2510.,
# 13 Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 µm wavelength range around room temperature
L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth and L. Worschech , Electron. Lett. 47, 1, Januar 2011, pp. 46-47.,
# 19 Measurements of Mars Methane at Gale Crater by the SAM Tunable Laser Spectrometer on the Curiosity Rover
C.R. Webster, P.R. Mahaffy, S.K. Atreya, G.J. Flesch, K.A. Farley, 44th Lunar and Planetary Science Conference,, LPI Contribution No. 1719, March 18-22 2013, p. 1366.,
# 29 Detection of Methane Isotopologues – cw-OPO vs. DFB Diode Laser
M. Wolff, S. Rhein, H. Bruhns, J. Koeth, L. Hildebrandt, P. Fuchs, 16th International Conference on Photoacoustic and Photothermal Phenomena.,
# 35 TDLAS-based sensors for in situ measurement of syngas composition in a pressurized, oxygen-blown, entrained flow coal gasifier
R. Sur, K. Sun, J.B. Jeffries, R.K. Hanson, R.J. Pummill, T. Waind, D.R. Wagner, K.J. Whitty, 2014, Appl. Phys. B, 116, 1, 2014, pp. 33-42,
# 50 Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring;
J. J. Scherer, J. B. Paul, H. J. Jost, Marc L. Fischer, Appl. Phys. B, 109, 3, November 2017, pp. 271-277.,
# 61 Demonstration of an Ethane Spectrometer for Methane Source Identification
T.I. Yacovitch, S.C. Herndon, J.R. Roscioli, C. Floerchinger, R.M. McGovern, M. Agnese, G. Petron, J. Kofler, C. Sweeney, A. Karion, S.A. Conley, E.A. Kort, L. Naehle, M. Fischer, L. Hildebrandt,.J. Koeth, J.B. McManus, D.D. Nelson, M.S. Zahniser, C.E. Kolb, Environ. Sci. Technol., 48, 2014, 8028-8034.,
# 62 High-sensitivity interference-free diagnostic for measurement of methane in shock tubes
R. Sur, S. Wang, K. Sun, D. F. Davidson, J. B. Jeffries, R. K. Hanson, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 156, May 2015, pp. 80-87,
# 63 Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits
C. Wang and P. Sahay, Sensors, 9, 2009, 8230 - 8262,

Optical properties

nanoplus distributed feedback lasers show outstanding spectral, tuning and electrical properties.

Spectrum 1651 nm DFB

Typical spectrum of a nanoplus 1651 nm distributed feedback laser diode

Tuning 1651 nm DFB

Typical mode hop free tuning of a nanoplus 1651 nm distributed feedback laser diode

PI Curve 1651 nm DFB

Typical power, current and voltage characteristics of a nanoplus 1651 nm distributed feedback laser diode

Learn more

Product Brief

More information

nanoplus uses a unique and patented technology for DFB laser manufacturing. We apply a lateral metal grating along the ridge waveguide, which is independent of the material system. Read more about our patented distributed feedback technology.

Request for quotation

Your Requirement

Request for quotation

Send your message