Products
DFB Laser
ICL
FP Laser
SLD
MIR LED
Packaging
FAQs
Services
Applications
Applications by Gas
Applications by Industry
Tunable Diode Laser Absorption Spectroscopy
Literature
Contact
People
Sales Partners
Meet Us
Directions
About Us
History & Innovations
Quality Management & Sustainability
Cooperations
Management
People
News
Literature
Meet Us
Careers
Technischer Assistent
Vertriebsingenieur
Projektleiter Halbleiterchipentwicklung Optoelektronik
Entwicklungsingenieur III-V Halbleiter basierte Laser und Detektoren
Ausbildungsplatz Mikrotechnologe

High-Power 3345 nm
TOP Wavelength

Discover Our Wavelengths

Distributed Feedback Laser

High-Power 3345 nm
TOP Wavelength

High-power DFB interband cascade lasers at 3345 nm are used for ethane detection.

Please have a look at the key features, specifications and applications.

Specifications
Mountings & Accessories
Applications
Papers & Links
Specifications
parameters
symbol
unit
minimum
typical
maximum
parameters

operating wavelength (at Top, Iop)

symbol

λop

unit

nm

minimum
typical

3345

maximum
parameters

optical output power (at λop)

symbol

Pop

unit

mW

minimum
typical

40

maximum
parameters

operating current

symbol

Iop

unit

mA

minimum
typical
maximum

120

parameters

operating voltage

symbol

Vop

unit

V

minimum
typical

5

maximum
parameters

threshold current

symbol

Ith

unit

mA

minimum

15

typical

25

maximum

40

parameters

side mode suppression ratio

symbol

SMSR

unit

dB

minimum
typical

> 35

maximum
parameters

current tuning coefficient

symbol

CI

unit

nm / mA

minimum
typical

0.10

maximum
parameters

temperature tuning coefficient

symbol

CT

unit

nm / K

minimum
typical

0.35

maximum
parameters

operating chip temperature

symbol

Top

unit

°C

minimum

+15

typical

+20

maximum

+40

parameters

operating case temperature (non-condensing)

symbol

TC

unit

°C

minimum

-20

typical

+25

maximum

+55

parameters

storage temperature (non-condensing)

symbol

TS

unit

°C

minimum

-30

typical

+20

maximum

+70

Mountings & Accessories
SM-BTF - our fiber-coupled workhorse
  • availability: 760 nm - 5500 nm
  • TEC: integrated TEC
  • NTC: integrated NTC
  • plug&play: fiber-coupled beam
  • size: large footprint
  • costs: higher cost than free space
TO66 - our workhorse for ICLs
  • availability: 2800 nm - 6500 nm
  • TEC: integrated large TEC
  • NTC: integrated NTC
  • cap: AR coated cap (optional)
  • window: AR coated window (optional)
  • plug&play: collimation required
  • size: small footprint
  • costs: low cost
chip on heatspreader - high-end OEM integration
  • availability: 760 nm - 6000 nm
  • TEC: no TEC
  • NTC: integrated NTC
  • cap: NA
  • window: NA
  • plug&play: collimation required
  • size: smallest footprint
  • costs: low cost
Heatsink for TO5 / TO66
  • availability: 760 nm - 6500 nm
  • NTC: integrated (optional)
  • heat distribution: warranted
  • connectors: for laser diode driver & temperature controller
  • posts: M6 thread for optical table
  • cage system: standard
  • collimation: none
Lens on cap
  • availability: 1850 nm - 6500 nm
  • heat distribution: none, use separate heatsink
  • connectors: TO66 connectors only
  • posts: none, use separate heatsink
  • cage system: none, use separate heatsink
  • collimation: high-end collimation, divergence < 4 mrad
Applications
C2H6 & C2H2
Monitoring of breath gas: C2H6 and C2H2

Medical breath analysis considers ethane and acetelyne as a biomarkers for asthma, schizophrenia or lung cancer. The research field of breath analysis uses methane as a biomarker for intestinal problems.

[ 187 , 10 ]
C2H6
Emission control by methane source identification: C2H6

Ethane is a by-product of methane emissions. The ethane ratio varies between methane emissions from thermogenic and biogenic sources. This allows differentiating oil and gas reserves from those of livestock, landfills, wetlands or stagnant water. Studies are executed on behalf of the US Environmental Protection Agency to quantify methane emissions caused byincreased natural gas exploration and production in the US. A newly developed ethane spectrometer delivers 1 second ethane measurements with sub-ppb precision in an ethane-methane mixture.

[ 187 , 61 ]
C2H6
Emission control of greenhouse gases: C2H6

Ethane is an important greenhouse gas that has a critical impact on climate change. Emissions are related to fossil fuel and biofuel consumption, biomass combustion and natural gas losses. Trace gas detection of ethane is an important tool to monitor greenhouse gases.

[ 187 , 146 , 145 , 128 , 119 , 10 ]
Papers & Links
# 9 DFB Lasers Between 760 nm and 16 µm for Sensing Applications
W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth , Sensors, 10, 2010, pp. 2492-2510,
# 10 Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane
K. Krzempek, R. Lewicki, L. Naehle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, F.K. Tittel , Appl. Phys. B , 106, 2, 2012, pp 251-255.,
# 53 CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell
K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, F.K. Tittel, Appl. Phys. B, 112, 4. September 2013, pp. 461-465.,
# 61 Demonstration of an Ethane Spectrometer for Methane Source Identification
T.I. Yacovitch, S.C. Herndon, J.R. Roscioli, C. Floerchinger, R.M. McGovern, M. Agnese, G. Petron, J. Kofler, C. Sweeney, A. Karion, S.A. Conley, E.A. Kort, L. Naehle, M. Fischer, L. Hildebrandt,.J. Koeth, J.B. McManus, D.D. Nelson, M.S. Zahniser, C.E. Kolb, Environ. Sci. Technol., 48, 2014, 8028-8034.,
# 63 Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits
C. Wang and P. Sahay, Sensors, 9, 2009, 8230 - 8262,
# 77 Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing
L. Dong, F. K. Tittel, C. Li, N. P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, R. J. Griffin , Optics Express, Vol. 24, Issue 6, 2016, pp. A528-A535.,
# 82 Ppb-level mid-infrared ethane detection based on three measurement schemes using a 3.34 μm continuous-wave interband cascade laser
C. Li, C. Zheng, L. Dong, W. Ye, F. K. Tittel, Y. Wang , Appl. Phys. B, July 2016, 122:185.,
# 106 Recent progress in laser‑based trace gas instruments: performance and noise analysis
J. B. McManus, M. S. Zahniser, D. D. Nelson et. al., Appl. Phys. B, 2015, 119: 203.,
# 119 Interband cascade laser based quartz-enhanced photoacoustic sensor for multiple hydrocarbons detection
A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, V. Spagnolo, Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV , 26th January 2018, 105400C,
# 122 A streamlined approach to hybrid-chemistry modeling for a low cetane-number alternative jet fuel
N. H. Pinkowski, Y. Wang , S. J. Cassady , D. F. Davidson , R. K. Hanson , Combustion and Flame, Vol.208, October 2019, pp. 15-26.,
# 123 Multi-wavelength speciation of high-temperature 1-butene pyrolysis
N. H. Pinkowski, S. J. Cassady, D. F. Davidson, R. K. Hanson, Fuel, Vol. 244, 15th May 2019, pp. 269-281.,
# 124 Tomographic laser absorption imaging ofcombustion species and temperature in the mid-wave infrared
C. Wei, D. I. Pineda, C. S. Goldenstein, R. M. Spearrin, Opt. Exp., Vol. 26, Iss. 16, 2018, pp. 20944 - 20951.,
# 125 Time-resolved laser absorption imaging of ethane at 2 kHz in unsteady partially premixed flames
K. K. Schwarm, C. Wei, D. I. Pineda, R. M. Spearrin, Appl. Opt., Vol. 58, Iss. 21, Juli 2019, pp. 5656 - 5662.,
# 128 Quartz-enhanced photoacoustic spectroscopy for hydrocarbon trace gas detection and petroleum exploration
A. Sampaoloa, G. Mendunib,P. Patimiscoa, M. Giglioa, V. M.N. Passaroc, L. Donga, H. Wua, F. K. Tittel, V. Spagnoloa, , Fuel, Vol.277, 2020,
# 140 Interband cascade laser arrays for simultaneous and selective analysis of C1–C5 hydrocarbons in petrochemical industry
J. Scheuermann, P. Kluczynski, K. Siembab, M. Straszewski, J. Kaczmarek, R. Weih, M. Fischer, J. Koeth, A. Schade, S. Höfling, Appl. Spectrosc, January 2021, 2021,
# 142 Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser
A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, V. Spagnolo, Sensors and Actuators B: Chemical, Vol. 282, 2019, pp. 952-960.,
# 145 High resolution spectra of 13C ethane and propane isotopologues photoacoustically measured using interband cascade lasers near 3.33 and 3.38 μm, respectively
A. Loh, M. Wolff, Journal of Quantitative Spectroscopy & Radiative Transfer, 227, 2019, pp. 111 – 116.,
# 146 Multivariate analysis of photoacoustic spectra for the detection of short-chained hydrocarbon isotopologues
A. Loh, M. Wolff, MDPI, 2020, 25, 2266.,
# 151 The interband cascade laser
J. R. Meyer, W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, I. Vurgaftman, Photonics, Vol. 7, No. 3 (75), 2020,
# 174 Dual-comb optical activity spectroscopy for the analysis of vibrational optical activity induced by external magnetic field
D. Peng, C. Gu, Z. Zuo, Y. Di,X. Zou, L. Tang, L. Deng1, D. Luo1, Y. Liu, W. Li, Nat. Commun., 14, 2023, 883,
# 178 Quartz-Enhanced Photoacoustic Sensors for Detection of Eight Air Pollutants
R. De Palo, A. Elefante, G. Biagi, F. Paciolla, R. Weih, V. Villada, A. Zifarelli, M. Giglio, A. Sampaolo, V. Spagnolo, P. Patimisco, Adv. Phot. Res., Vo. 4, Iss. 6, 2023,
# 185 Comparison of photoacoustic spectroscopy and cavity ring-down spectroscopy for ambient methane monitoring at Hohenpeißenberg
M. Müller, S. Weigl, J. Müller-Williams, M. Lindauer, T. Rück, S. Jobst, R. Bierl, and F.-M. Matysik, Atmos. Meas. Tech., 16, 2023, 4263–4270,
# 187 Characterizing a sensitive compact mid-infrared photoacoustic sensor for methane, ethane and acetylene detection considering changing ambient parameters and bulk composition (N2, O2 and H2O)
J. Pangerl, M. Müller, T. Rück, S. Weigl, R. Bierl, Sens. Actuators B Chem., 352, 2022, 130962,
# 188 An Algorithmic Approach to Compute the Effect of Non-Radiative Relaxation Processes in Photoacoustic Spectroscopy
M. Müller, T. Rück, S. Jobst, J. Pangerl, S. Weigl, R. Bierl, F.-M. Matysik, Photoacoustics, 26, 2022, 100371,
# 189 Digital Twin of a photoacoustic trace gas sensor for monitoring methane in complex gas compositions
M. Müller, T. Rück, S. Jobst, J. Pangerl, S. Weigl, R. Bierl, F.-M. Matysik, Sens. Actuators B Chem., 378, 2023, 133119,

Optical properties

nanoplus distributed feedback lasers show outstanding spectral, tuning and electrical properties.

Spectrum 3345 nm DFB high-power

Typical spectrum of a nanoplus high-power 3345 nm distributed feedback interband cascade laser

Tuning 3345 nm DFB high-power

Typical mode hop free tuning of a nanoplus high-power 3345 nm distributed feedback interband cascade laser

PI Curve 3345 nm DFB high-power

Typical power, current and voltage characteristics of a nanoplus high-power 3345 nm distributed feedback interband cascade laser

Learn more

Product Brief

More information

nanoplus uses a unique and patented technology for DFB laser manufacturing. We apply a lateral metal grating along the ridge waveguide, which is independent of the material system. Read more about our patented distributed feedback technology.

Request for quotation

Your Requirement

Request for quotation

Send your message