Products
DFB Laser
ICL
FP Laser
SLD
MIR LED
Packaging
FAQs
Services
Applications
Applications by Gas
Applications by Industry
Tunable Diode Laser Absorption Spectroscopy
Literature
Contact
People
Sales Partners
Meet Us
Directions
About Us
History & Innovations
Quality Management & Sustainability
Cooperations
Management
People
News
Literature
Meet Us
Careers
Elektriker Betriebstechnik
Teamleiter Servicetechnik
Ausbildungsplatz Mikrotechnologe
Ausbildungsplatz Kauffrau / Kaufmann für Büromanagement

3240 nm & 3270 nm
TOP Wavelength

Discover Our Wavelengths

Distributed Feedback Laser

3240 nm & 3270 nm
TOP Wavelength

DFB interband cascade lasers at 3240 nm and 3270 nm are used for methane detection. Please have a look at the key features, specifications and applications.

Specifications
Mountings & Accessories
Applications
Papers & Links
Specifications
parameters
symbol
unit
minimum
typical
maximum
parameters

operating wavelength (at Top, Iop)

symbol

λop

unit

nm

minimum
typical

3240 & 3270

maximum
parameters

optical output power (at λop)

symbol

Pop

unit

mW

minimum
typical

15

maximum
parameters

operating current

symbol

Iop

unit

mA

minimum
typical
maximum

120

parameters

operating voltage

symbol

Vop

unit

V

minimum
typical

5

maximum
parameters

threshold current

symbol

Ith

unit

mA

minimum

15

typical

25

maximum

40

parameters

side mode suppression ratio

symbol

SMSR

unit

dB

minimum
typical

> 35

maximum
parameters

current tuning coefficient

symbol

CI

unit

nm / mA

minimum
typical

0.10

maximum
parameters

temperature tuning coefficient

symbol

CT

unit

nm / K

minimum
typical

0.35

maximum
parameters

operating chip temperature

symbol

Top

unit

°C

minimum

+15

typical

+20

maximum

+40

parameters

operating case temperature (non-condensing)

symbol

TC

unit

°C

minimum

-20

typical

+25

maximum

+55

parameters

storage temperature (non-condensing)

symbol

TS

unit

°C

minimum

-30

typical

+20

maximum

+70

Specifications
TO66 - our workhorse for ICLs
  • availability: 2800 nm - 6500 nm
  • TEC: integrated large TEC
  • NTC: integrated NTC
  • cap: AR coated cap (optional)
  • window: AR coated window (optional)
  • plug&play: collimation required
  • size: small footprint
  • costs: low cost
chip on heatspreader - high-end OEM integration
  • availability: 760 nm - 6000 nm
  • TEC: no TEC
  • NTC: integrated NTC
  • cap: NA
  • window: NA
  • plug&play: collimation required
  • size: smallest footprint
  • costs: low cost
Heatsink for TO5 / TO66
  • availability: 760 nm - 6500 nm
  • NTC: integrated (optional)
  • heat distribution: warranted
  • connectors: for laser diode driver & temperature controller
  • posts: M6 thread for optical table
  • cage system: standard
  • collimation: none
Mountings & Accessories
CH4
Emission control of greenhouse gases: CH4

Greenhouse gas effects and climate change have triggered global emission monitoring of pollutants like methane. Methane is one of the Earth’s most important atmospheric gases. It is, to a large extend, responsible for the accelerating greenhouse effect. The global warming potential of methane is about 30 times higher than that of CO2 based on a 100 year scale. Studies are executed on behalf of the US Environmental Protection Agency to quantify the methane emissions caused by the increased natural gas exploration and production in the US.

[ 178 , 176 , 162 , 146 , 142 , 141 , 129 , 128 , 119 , 109 , 107 , 92 , 61 ]
CH4
Leakage control in gas pipelines: CH4

Leaks of CH4 may cause dangerous situations and are hard to locate precisely. Hence, maintenance of underground pipelines produces high costs. CH4 leaks are also an important source for greenhouse gases. With TDLAS a strong tool is available to manufacture portable leak detectors.

[ 162 ]
CH4
Combustion control in integrated gasification fuel cell cycles: CH4

Methane content of syngas is controlled to improve combustion efficiency of integrated gasification fuel cell cycles.

[ 35 ]
CO2 & CH4
Combustion control in high temperature processes: CO2 and CH4

Continuous monitoring of contents like CO2 or CH4 concentrations is essential for the efficiency of high-temperature processes in e. g. incinerators, furnaces or petrochemical refineries. Managing the CO2 content in combustion processes simultaneously reduces greenhouse gas emissions. This is also relevant for energy generating industries like coal burning power plants.

[ 154 , 124 , 121 , 115 , 112 , 111 , 96 , 94 , 62 , 45 , 40 , 35 , 12 ]
Papers & Links
# 5 DFB lasers exceeding 3 µm for industrial applications
L. Naehle, L. Hildebrandt, Laser+Photonics, 2012, pp. 78-80,
# 7 DFB laser diodes expand hydrocarbon sensing beyond 3 µm
L. Hildebrandt, L. Naehle, Laser Focus World, January 2012, pp. 87-90,
# 9 DFB Lasers Between 760 nm and 16 µm for Sensing Applications
W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth , Sensors, 10, 2010, pp. 2492-2510,
# 13 Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 µm wavelength range around room temperature
L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth and L. Worschech , Electron. Lett. 47, 1, Januar 2011, pp. 46-47.,
# 19 Measurements of Mars Methane at Gale Crater by the SAM Tunable Laser Spectrometer on the Curiosity Rover
C.R. Webster, P.R. Mahaffy, S.K. Atreya, G.J. Flesch, K.A. Farley, 44th Lunar and Planetary Science Conference,, LPI Contribution No. 1719, March 18-22 2013, p. 1366.,
# 29 Detection of Methane Isotopologues – cw-OPO vs. DFB Diode Laser
M. Wolff, S. Rhein, H. Bruhns, J. Koeth, L. Hildebrandt, P. Fuchs, 16th International Conference on Photoacoustic and Photothermal Phenomena.,
# 35 TDLAS-based sensors for in situ measurement of syngas composition in a pressurized, oxygen-blown, entrained flow coal gasifier
R. Sur, K. Sun, J.B. Jeffries, R.K. Hanson, R.J. Pummill, T. Waind, D.R. Wagner, K.J. Whitty, 2014, Appl. Phys. B, 116, 1, 2014, pp. 33-42,
# 50 Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring;
J. J. Scherer, J. B. Paul, H. J. Jost, Marc L. Fischer, Appl. Phys. B, 109, 3, November 2017, pp. 271-277.,
# 61 Demonstration of an Ethane Spectrometer for Methane Source Identification
T.I. Yacovitch, S.C. Herndon, J.R. Roscioli, C. Floerchinger, R.M. McGovern, M. Agnese, G. Petron, J. Kofler, C. Sweeney, A. Karion, S.A. Conley, E.A. Kort, L. Naehle, M. Fischer, L. Hildebrandt,.J. Koeth, J.B. McManus, D.D. Nelson, M.S. Zahniser, C.E. Kolb, Environ. Sci. Technol., 48, 2014, 8028-8034.,
# 62 High-sensitivity interference-free diagnostic for measurement of methane in shock tubes
R. Sur, S. Wang, K. Sun, D. F. Davidson, J. B. Jeffries, R. K. Hanson, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 156, May 2015, pp. 80-87,
# 63 Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits
C. Wang and P. Sahay, Sensors, 9, 2009, 8230 - 8262,
# 64 Interband Cascade Lasers - Topical Review
I. Vurgaftman, R. Weih, M. Kamp, C.L. Canedy, C.S. Kim, M. Kim, W.W. Bewley, C.D. Merritt, J. Abell, S. Hoefling, Phys. D: Appl. Phys., 48, 2015, pp. 123001-12017.,
# 77 Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing
L. Dong, F. K. Tittel, C. Li, N. P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, R. J. Griffin , Optics Express, Vol. 24, Issue 6, 2016, pp. A528-A535.,
# 81 Dynamic spectral characteristics measurement of DFB interband cascade laser under injection current tuning
Z. Du, G. Luo, Y. An, J. Li, Appl. Phys. Lett., 109, 2016, 011903.,
# 85 Frequency modulation characteristics for interband cascade lasers emitting at 3 µm
J. Li, Z. Du, Y. An, Appl. Phys. B, 2015, 121:7–17.,
# 90 Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 µm interband cascade laser
K. M. Manfred, G. A. D. Ritchie, N. Lang, J. Roepcke, J. H. van Helden , Appl. Phys. Lett. 106, 2015, 221106.,
# 92 Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy
Ch. Zheng, W. Ye, N. P. Sanchez, Ch. Li, L. Dong, Y. Wang, R. J. Griffin, F. K. Tittel , Sensors and Actuators B: Chemical, Vol. 244, June 2017, 365–372.,
# 102 Laser detection
L. Hildebrandt, Hydrocarbon Engineering, Februar 2018,
# 107 Interband cascade laser-based ppbv-level mid-infrared methane detection using two digital lock-in amplifier schemes
F. Song, C. Zheng, D. Yu, Y. Zhou, W. Yan, W. Ye, Y. Zhang, Y. Wang, F. K. Tittel , Appl. Phys. B, 2018, 124:51.,
# 109 Performance enhancement of methane detection using a novel self-adaptive mid-infrared absorption spectroscopy technique
F. Song, C. Zheng, W. Yan, W. Ye, Y. Zhang, Y. Wang, F. K. Tittel, IEEE Phot. Journ., Vol.10, No.6, December 2018,
# 122 A streamlined approach to hybrid-chemistry modeling for a low cetane-number alternative jet fuel
N. H. Pinkowski, Y. Wang , S. J. Cassady , D. F. Davidson , R. K. Hanson , Combustion and Flame, Vol.208, October 2019, pp. 15-26.,
# 123 Multi-wavelength speciation of high-temperature 1-butene pyrolysis
N. H. Pinkowski, S. J. Cassady, D. F. Davidson, R. K. Hanson, Fuel, Vol. 244, 15th May 2019, pp. 269-281.,
# 140 Interband cascade laser arrays for simultaneous and selective analysis of C1–C5 hydrocarbons in petrochemical industry
J. Scheuermann, P. Kluczynski, K. Siembab, M. Straszewski, J. Kaczmarek, R. Weih, M. Fischer, J. Koeth, A. Schade, S. Höfling, Appl. Spectrosc, January 2021, 2021,
# 141 Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration
H. Wu, L. Dong, X. Yin, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, Sensors and Actuators B: Chemical, Vol.297, 2019, 126753.,
# 151 The interband cascade laser
J. R. Meyer, W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, I. Vurgaftman, Photonics, Vol. 7, No. 3 (75), 2020,
# 162 Methane leak detection by tunable laser spectroscopy and mid-infrared imaging
T. Strahl, J. Herbst, A. Lambrecht, E. Maier, J. Steinebrunner, J. Wöllenstein , Appl. Optics, Vol. 60, No. 15, 2021, C68-C75,
# 176 Photoacoustic methane detection inside a MEMS microphone
T. Strahl, J. Steinebrunner, C. Weber, J. Wöllenstein, K. Schmitt, Photoacoustics, 29, 2023, 100428,
# 180 Rovibrational Polaritons in Gas-Phase Methane
A. D. Wright, J. C. Nelson, M. L. Weichman, J. Am. Chem. Soc., 145, 10, 2023, 5982–5987,

Optical properties

nanoplus distributed feedback lasers show outstanding spectral, tuning and electrical properties.

Spectrum 3270 nm DFB

Typical spectrum of a nanoplus 3270 nm distributed feedback interband cascade laser

Tuning 3270 nm DFB

Typical mode hop free tuning of a nanoplus 3270 nm distributed feedback interband cascade laser

PI Curve 3270 nm DFB

Typical power, current and voltage characteristics of a nanoplus 3270 nm distributed feedback interband cascade laser

Learn more

Product Brief

More information

nanoplus uses a unique and patented technology for DFB laser manufacturing. We apply a lateral metal grating along the ridge waveguide, which is independent of the material system. Read more about our patented distributed feedback technology.

Request for quotation

Your Requirement

Request for quotation

Send your message