Products
DFB Laser
ICL
FP Laser
SLD
MIR LED
Packaging
FAQs
Services
Applications
Applications by Gas
Applications by Industry
Tunable Diode Laser Absorption Spectroscopy
Literature
Contact
People
Sales Partners
Meet Us
Directions
About Us
History & Innovations
Quality Management & Sustainability
Cooperations
Management
People
News
Literature
Meet Us
Careers
PhD positions
Technischer Assistent
Vertriebsingenieur
Ausbildungsplatz Mikrotechnologe

4000 nm - 4600 nm Distributed Feedback Laser

Discover Our Wavelengths

Distributed Feedback Laser

4000 nm - 4600 nm Distributed Feedback Laser

Select your target wavelength at any wavelength between 4000 nm and 4600 nm. The table below presents typical specifications, available mountings as well as application references & further reading.

Specifications
Mountings & Accessories
Applications
Papers & Links
Specifications
parameters
symbol
unit
minimum
typical
maximum
parameters

operating wavelength (at Top, Iop)

symbol

λop

unit

nm

minimum
typical

0.1 nm

maximum
parameters

optical output power (at λop)

symbol

Pop

unit

mW

minimum
typical

5

maximum
parameters

operating current

symbol

Iop

unit

mA

minimum
typical
maximum

120

parameters

operating voltage

symbol

Vop

unit

V

minimum
typical

5

maximum
parameters

threshold current

symbol

Ith

unit

mA

minimum

20

typical

40

maximum

60

parameters

side mode suppression ratio

symbol

SMSR

unit

dB

minimum
typical

> 35

maximum
parameters

current tuning coefficient

symbol

CI

unit

nm / mA

minimum
typical

0.12

maximum
parameters

temperature tuning coefficient

symbol

CT

unit

nm / K

minimum
typical

0.45

maximum
parameters

operating chip temperature

symbol

Top

unit

°C

minimum

+10

typical

+20

maximum

+50

parameters

operating case temperature (non-condensing)

symbol

TC

unit

°C

minimum

-20

typical

+25

maximum

+50

parameters

storage temperature (non-condensing)

symbol

TS

unit

°C

minimum

-30

typical

+20

maximum

+70

Mountings & Accessories
SM-BTF - our fiber-coupled workhorse
  • availability: 760 nm - 5500 nm
  • TEC: integrated TEC
  • NTC: integrated NTC
  • plug&play: fiber-coupled beam
  • size: large footprint
  • costs: higher cost than free space
TO66 - our workhorse for ICLs
  • availability: 2800 nm - 6500 nm
  • TEC: integrated large TEC
  • NTC: integrated NTC
  • cap: AR coated cap (optional)
  • window: AR coated window (optional)
  • plug&play: collimation required
  • size: small footprint
  • costs: low cost
chip on heatspreader - high-end OEM integration
  • availability: 760 nm - 6000 nm
  • TEC: no TEC
  • NTC: integrated NTC
  • cap: NA
  • window: NA
  • plug&play: collimation required
  • size: smallest footprint
  • costs: low cost
Heatsink for TO5 / TO66
  • availability: 760 nm - 6500 nm
  • NTC: integrated (optional)
  • heat distribution: warranted
  • connectors: for laser diode driver & temperature controller
  • posts: M6 thread for optical table
  • cage system: standard
  • collimation: none
Lens on cap
  • availability: 1850 nm - 5500 nm
  • heat distribution: none, use separate heatsink
  • connectors: TO66 connectors only
  • posts: none, use separate heatsink
  • cage system: none, use separate heatsink
  • collimation: high-end collimation, divergence < 4 mrad
Applications
Typical Applications
4000 nm - 4600 nm

Carbon dioxide, nitric oxide, water vapour and most hydrocarbons, like methane, acetylene, formaldehyde and ethane have their strongest absorption features between 3000 nm and 6500 nm.

[ 186 , 184 , 178 , 172 ]
Papers & Links
# 2 Advanced Gas Sensing Applications Above 3 µm with DFB Laser Diodes
L. Naehle, L. Hildebrandt, M. Fischer, J. Koeth, Gases & Instrumentation, March/April 2012, pp. 25 - 28,
# 5 DFB lasers exceeding 3 µm for industrial applications
L. Naehle, L. Hildebrandt, Laser+Photonics, 2012, pp. 78-80,
# 7 DFB laser diodes expand hydrocarbon sensing beyond 3 µm
L. Hildebrandt, L. Naehle, Laser Focus World, January 2012, pp. 87-90,
# 8 ICLs open opportunities for mid-IR sensing
L. Naehle, L. Hildebrandt, M. Kamp, S. Hoefling, Laser Focus World, May 2013, pp. 70-73,
# 9 DFB Lasers Between 760 nm and 16 µm for Sensing Applications
W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth , Sensors, 10, 2010, pp. 2492-2510,
# 13 Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 µm wavelength range around room temperature
L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth and L. Worschech , Electron. Lett. 47, 1, Januar 2011, pp. 46-47.,
# 26 Corrugated-sidewall interband cascade lasers with single-mode midwave-infrared emission at room temperature;
C.S. Kim, M. Kim, W.W. Bewley, J.R. Lindle, C.L. Canedy, J. Abell, I. Vurgaftman, J.R. Meyer , Appl. Phys. Lett., 95, 2009, 231103.,
# 36 Single mode interband cascade lasers based on lateral metal gratings
R. Weih, L. Naehle, Sven Hoefling, J. Koeth, M. Kamp , Appl. Phys. Lett., 105,7, 2014, pp. 071111.,
# 40 Comb-assisted spectroscopy of CO2 absorption profiles in the near- and mid-infrared regions
A. Gambetta, D. Gatti, A. Castrillo, N. Coluccelli, G. Galzerano, P. Laporta, L. Gianfrani, M. Marangoni, Appl. Phys. B, 109, 3, November 2012, pp. 385-390,
# 43 Chemical analysis of surgical smoke by infrared laser spectroscopy
Michele Gianella, Markus W. Sigrist , Appl. Phys. B, 109, 3, November 2012, pp. 485-496.,
# 54 Demonstration of the self-mixing effect in interband cascade lasers
K. Bertling, Y.L. Lim, T. Taimre, D. Indjin, P. Dean, R. Weih, S. Hoefling, M. Kamp, M. von Edlinger, J. Koeth, A.D. Rakic, Appl. Phys. Lett., 103, 2013, 231107,
# 64 Interband Cascade Lasers - Topical Review
I. Vurgaftman, R. Weih, M. Kamp, C.L. Canedy, C.S. Kim, M. Kim, W.W. Bewley, C.D. Merritt, J. Abell, S. Hoefling, Phys. D: Appl. Phys., 48, 2015, pp. 123001-12017.,
# 67 New Opportunities in Mid-Infrared Emission Control
P. Geiser, Sensors, 2015, pp. 22724-22736.,
# 75 Interband cascade laser sources in the mid-infrared for green photonics
J. Koeth, M. von Edlinger, J. Scheuermann, S. Becker, L. Nähle, M. Fischer, R. Weih, M. Kamp, S. Höfling, , Novel In-Plane Semiconductor Lasers , XV, 9767, 10th March 2016, 976712,
# 87 Optical‑feedback cavity‑enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis
L. Richard, I. Ventrillard, G. Chau, K. Jaulin, E. Kerstel, D. Romanini , Appl. Phys. B, 2016, 122:247.,
# 94 Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2 μm
J. J. Girard, R. M. Spearrin, C. S. Goldenstein, R. K. Hanson, Elsevier , Combustion and Flame, Vol.178, April 2017, pp. 158 – 167.,
# 100 Multiheterodyne spectroscopy using interband cascade lasers
L. A. Sterczewski, J. Westberg, C. L. Patrick, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, C. D. Merritt, I. Vurgaftman, J. R. Meyer and G. Wysocki, Opt. Eng., 57(1), Januar 2018, 011014,
# 101 Single-mode interband cascade laser multiemitter structure for two-wavelength absorption spectroscopy;
Scheuermann, R. Weih, S. Becker, M. Fischer, J. Koeth, S. Höfling, Opt. Eng., 57 (1), September 2017, 011008,
# 102 Laser detection
L. Hildebrandt, Hydrocarbon Engineering, Februar 2018,
# 104 Mid-infrared heterodyne phase-sensitive dispersion spectroscopy in flame measurements
L. Ma, Z. Wang, K.-P. Cheong, H. Ning, W. Ren , Proceedings of the Combustion Institute, 2018, pp. 1 - 8.,
# 105 Design and performance of a dual-laser instrument for multiple isotopologues of carbon dioxide and water
J. B. McManus, D. D. Nelson and M. S. Zahniser , Optics Express, Vol.23, Issue 5, 2015, pp. 6569-6586.,
# 106 Recent progress in laser‑based trace gas instruments: performance and noise analysis
J. B. McManus, M. S. Zahniser, D. D. Nelson et. al., Appl. Phys. B, 2015, 119: 203.,
# 111 Mid-infrared heterodyne phase-sensitive dispersion spectroscopy in flame measurements
L. Ma, Z. Wang, K.-P. Cheong, H. Ning, W. Ren, Pro. of the Comb. Inst., Vol.37, Issue 2, 2019, pp. 1329 - 1336.,
# 112 Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy
L. Ma, L. Y. Lau, W. Ren, Appl. Phys. B, 2017, 123: 83.,
# 115 A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser
Z. Wanga, Q. Wanga, J. Y.-L. Chingb, J. C.-Y. Wub, G. Zhangc, W. Rena , Sensors and Actuators, B 246, 2017, pp. 710–715.,
# 117 The driver design for N2O gas detection system based on tunable interband cascade laser
L. Liao, J. Zhang, D. Dong, E3S Web Conf., Vol.78, 2019, 03002.,
# 121 A comparative laser absorption and gas chromatography study of low-temperature n-heptane oxidation intermediates
A. M. Ferris, J. W. Streicher, A. J. Susa, D. F. Davidson, R. K. Hanson , Proc. of the Comb. Inst., Vol.37, Iss.1, 2019, pp. 249-257.,
# 127 Narrow linewidth characteristics of interband cascade lasers
Y. Deng , B.-B. Zhao, X.-G. Wang, C. Wang, Appl. Phys. Lett., Vol.116, 2020, 201101,
# 131 Unveiling quantum-limited operation of interband cascade lasers
S. Borri , M. Siciliani de Cumis , S. Viciani , F. D’Amato, P. De Natale, APL Phot., Vol.5, Iss.3, 2020, 036101,
# 132 Light and microwaves in laser frequency combs: an interplay of spatio-temporal phenomena
M. Piccardo, D. Kazakov, B. Schwarz, P. Chevalier, A. Amirzhan, Y. Wang, F. Xie, K. Lascola, S. Becker, L. Hildebrandt, R. Weih, A. Belyanin, F. Capasso, San Jose, CA, USA, 2019, , 2019 Conference on Lasers and Electro-Optics (CLEO), 2019, pp. 1-2.,
# 133 Midinfrared sensor system based on tunable laser absorption spectroscopy for dissolved carbon dioxide analysis in the south china sea: system-level integration and deployment
Z. Liu, C. Zheng, T. Zhang, Y. Li, Q. Ren, C. Chen, W. Ye, Y. Zhang, Y. Wang, F. K. Tittel, Anal. Chem., Vol. 92, Iss. 12, 2020, pp. 8178 − 8185.,
# 137 Line mixing and broadening of carbon dioxide by argon in the v3 bandhead near 4.2 μm at high temperatures and high pressures
D. D. Lee, F. A. Bendana, A. P. Nair, D. I. Pineda , R. M. Spearrin, , Journal of Quantitative Spectroscopy & Radiative Transfer, No. 253, 2020, 107135,
# 145 High resolution spectra of 13C ethane and propane isotopologues photoacoustically measured using interband cascade lasers near 3.33 and 3.38 μm, respectively
A. Loh, M. Wolff, Journal of Quantitative Spectroscopy & Radiative Transfer, 227, 2019, pp. 111 – 116.,
# 146 Multivariate analysis of photoacoustic spectra for the detection of short-chained hydrocarbon isotopologues
A. Loh, M. Wolff, MDPI, 2020, 25, 2266.,
# 150 In‑situ thermochemical analysis of hybrid rocket fuel oxidation via laser absorption tomography of CO, CO2, and H2O
F. A. Bendana, I. C. Sanders, J. J. Castillo, C. G. Hagström, D. I. Pineda, R. M. Spearrin, Experiments in Fluids, Iss. 9, Art. 190, 2020,
# 151 The interband cascade laser
J. R. Meyer, W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, I. Vurgaftman, Photonics, Vol. 7, No. 3 (75), 2020,
# 154 Measurements of H2O, CO2, CO and Static Temperature inside Rotating Detonation Engines
K. Thurmond, K. A. Ahmed, S. Vasu, AIAA, SciTech Forum, Session: Detonative Pressure Gain Combustion I, 2019,
# 157 MHz laser absorption spectroscopy via diplexed RF modulation for pressure, temperature, and species in rotating detonation rocket flows
A. Nair, D. Lee, D. I. Pineda, J. Kriesel, W. A. Hargus Jr., J. W. Bennewitz, S. A. Danczyk, R. M. Spearrin, Appl. Phys. B, Lasers and Optics, 126, 2020,
# 169 Carbon dioxide mid-infrared laser spectroscopy with a circular multireflection (CMR) cell
T. Phan, D. Tran, J. Esper, C. Nixon, G. Nehmetallah, SPIE Proc., 12116, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XXIII, 2022,
# 172 Advanced Photonic Sensors Based on Interband Cascade Lasers for Real-Time Mouse Breath Analysis
E. Tütüncü, M. Nägele, S. Becker, M. Fischer, J. Koeth, C. Wolf, S. Köstler, V. Ribitsch, A. Teuber, M. Gröger, S. Kress, M. Wepler, U. Wachter, J. Vogt, P. Radermacher, B. Mizaikoff, ACS Sens., 3, 2018, 1743−1749,
# 178 Quartz-Enhanced Photoacoustic Sensors for Detection of Eight Air Pollutants
R. De Palo, A. Elefante, G. Biagi, F. Paciolla, R. Weih, V. Villada, A. Zifarelli, M. Giglio, A. Sampaolo, V. Spagnolo, P. Patimisco, Adv. Phot. Res., Vo. 4, Iss. 6, 2023,
# 181 High-speed laser absorption measurements of carbon oxides in linear detonation channels
K. L. Fetter, B. R. Steavenson, B. M. Ng, A. Andrade, C. S. Combs, D. I. Pineda, AIAA Aviation 2023 Forum, 2023, 4384,
# 184 Methyl methacrylate thermal decomposition: Modeling and laser spectroscopy of species time-histories behind reflected shock waves
I. C. Sanders, N. M. Kuenning, N. Q. Minesi, D. I. Pineda, R. M. Spearrin, Fuel, Vol. 335, 2023, 126846,
# 186 Measurement of CO2 isotopologue ratios using a hollow waveguide-based mid-infrared dispersion spectrometer
H. Zhang, T. Wu, Q. Wu, W. Chen, C. Ye, M. Wang, X. He, Anal. Chem., 95 (50), 2023, 18479-18486,

Optical properties

nanoplus distributed feedback lasers show outstanding spectral, tuning and electrical properties.

Spectrum 4524 nm DFB

Typical spectrum of a nanoplus 4524 nm distributed feedback interband cascade laser

Tuning 4524 nm DFB

Typical mode hop free tuning of a nanoplus 4524 nm distributed feedback interband cascade laser

PI Curve 4524 nm DFB

Typical power, current and voltage characteristics of a nanoplus 4524 nm distributed feedback interband cascade laser

Learn more

Product Brief

More information

nanoplus uses a unique and patented technology for DFB laser manufacturing. We apply a lateral metal grating along the ridge waveguide, which is independent of the material system. Read more about our patented distributed feedback technology.

Request for quotation

Your Requirement

Request for quotation

Send your message