Products
DFB Laser
ICL
FP Laser
SLD
MIR LED
Packaging
FAQs
Services
Applications
Applications by Gas
Applications by Industry
Tunable Diode Laser Absorption Spectroscopy
Literature
Contact
People
Sales Partners
Meet Us
Directions
About Us
History & Innovations
Quality Management & Sustainability
Cooperations
Management
People
News
Literature
Meet Us
Careers
Vertriebsingenieur
Projektleiter Halbleiterchipentwicklung Optoelektronik
Entwicklungsingenieur III-V Halbleiter basierte Laser und Detektoren
Ausbildungsplatz Mikrotechnologe

Interband Cascade
Laser

Detecting the strongest absorption bands in the mid-infrared

DFB Interband Cascade Lasers

nanoplus DFB ICLs for new TDLAS applications in mid-infrared

nanoplus offers a DFB interband cascade laser (ICL) at any target wavelength in the mid-infrared (MIR) between 3 μm and 6 μm. The device operates in continuous wave (cw) mode around room temperature. Specifications and behavior are very comparable to a nanoplus laser at lower wavelengths. When you set up an ICL-based analyzer, you can, hence, transfer the engineering knowledge you have gained from building short-wavelength gas sensors.

The nanoplus DFB ICL opens tunable laser absorption spectroscopy (TLAS) for novel MIR applications in industrial gas sensing.

In the 3 μm to 6 μm wavelength window many industrially relevant trace gases have their strongest absorption bands. They show absorption strengths that are several orders of magnitude higher than those in other infrared (IR) areas. This concerns prevalent molecules such as carbon dioxide (CO2), nitric oxide (NO) or water (H2O). Most hydrocarbons, e. g. methane, equally locate their topmost absorbing features at these ICL wavelengths.

Using the strongest absorption band of the detected trace gas contributes to

  • accelerate the sensing speed
  • reduce the noise and
  • miniaturize the sensor.

nanoplus ICLs are considered for various progressive applications in industry and research. In the oil and gas sector, they enable accurate process control and support higher energy efficiency and pollutant reduction.

Compared to other sensing techniques, such as gas chromatography, TDLAS-based sensors offer the unmatched advantage of real-time analysis.

Specifications of Interband Cascade Lasers

Learn more about the specifications of our range of interband cascade lasers.

Further reading on the use of Interband Cascade Lasers

Applications & Papers

Applications
Papers & Links
Applications
CO2 & NOx
Emission control of exhaust fumes: CO2 and NOx

Guided by environmental policies, the automobile industry is concerned to reduce the carbon footprint of vehicles. Automotive suppliers develop innovative combustion engines to control CO2 and NOx concentration in exhaust fumes.

[ 115 ]
NOx
Monitoring of breath gas: NOx

The field of breath analysis considers NOX as a biomarker for asthma and other pulmonary diseases. This new technology becomes more established for clinical applications. It is a cost-effective and non-invasive method of diagnosis and treatment monitoring.

[ 116 , 49 ]
C2H6 & C2H2
Monitoring of breath gas: C2H6 and C2H2

Medical breath analysis considers ethane and acetelyne as a biomarkers for asthma, schizophrenia or lung cancer. The research field of breath analysis uses methane as a biomarker for intestinal problems.

[ 187 , 10 ]
NOx
Emission control of flue gases: NOx

NOx is produced during fuel combustion at power plants and other industrial facilities. When it reacts with SO2 it causes acid rain. For this reason NOx and SO2 emissions are restricted and need to be monitored.

[ 67 ]
C2H6
Emission control by methane source identification: C2H6

Ethane is a by-product of methane emissions. The ethane ratio varies between methane emissions from thermogenic and biogenic sources. This allows differentiating oil and gas reserves from those of livestock, landfills, wetlands or stagnant water. Studies are executed on behalf of the US Environmental Protection Agency to quantify methane emissions caused byincreased natural gas exploration and production in the US. A newly developed ethane spectrometer delivers 1 second ethane measurements with sub-ppb precision in an ethane-methane mixture.

[ 187 , 61 ]
CH4
Emission control of greenhouse gases: CH4

Greenhouse gas effects and climate change have triggered global emission monitoring of pollutants like methane. Methane is one of the Earth’s most important atmospheric gases. It is, to a large extend, responsible for the accelerating greenhouse effect. The global warming potential of methane is about 30 times higher than that of CO2 based on a 100 year scale. Studies are executed on behalf of the US Environmental Protection Agency to quantify the methane emissions caused by the increased natural gas exploration and production in the US.

[ 189 , 188 , 187 , 178 , 176 , 162 , 146 , 142 , 141 , 129 , 128 , 119 , 109 , 107 , 92 , 61 ]
C2H6
Emission control of greenhouse gases: C2H6

Ethane is an important greenhouse gas that has a critical impact on climate change. Emissions are related to fossil fuel and biofuel consumption, biomass combustion and natural gas losses. Trace gas detection of ethane is an important tool to monitor greenhouse gases.

[ 187 , 146 , 145 , 128 , 119 , 10 ]
CH4
Leakage control in gas pipelines: CH4

Leaks of CH4 may cause dangerous situations and are hard to locate precisely. Hence, maintenance of underground pipelines produces high costs. CH4 leaks are also an important source for greenhouse gases. With TDLAS a strong tool is available to manufacture portable leak detectors.

[ 162 ]
CH4
Combustion control in integrated gasification fuel cell cycles: CH4

Methane content of syngas is controlled to improve combustion efficiency of integrated gasification fuel cell cycles.

[ 35 ]
CO2 & CH4
Combustion control in high temperature processes: CO2 and CH4

Continuous monitoring of contents like CO2 or CH4 concentrations is essential for the efficiency of high-temperature processes in e. g. incinerators, furnaces or petrochemical refineries. Managing the CO2 content in combustion processes simultaneously reduces greenhouse gas emissions. This is also relevant for energy generating industries like coal burning power plants.

[ 154 , 124 , 121 , 115 , 112 , 111 , 96 , 94 , 62 , 45 , 40 , 35 , 12 ]
Papers & Links
# 2 Advanced Gas Sensing Applications Above 3 µm with DFB Laser Diodes
L. Naehle, L. Hildebrandt, M. Fischer, J. Koeth, Gases & Instrumentation, March/April 2012, pp. 25 - 28,
# 5 DFB lasers exceeding 3 µm for industrial applications
L. Naehle, L. Hildebrandt, Laser+Photonics, 2012, pp. 78-80,
# 7 DFB laser diodes expand hydrocarbon sensing beyond 3 µm
L. Hildebrandt, L. Naehle, Laser Focus World, January 2012, pp. 87-90,
# 8 ICLs open opportunities for mid-IR sensing
L. Naehle, L. Hildebrandt, M. Kamp, S. Hoefling, Laser Focus World, May 2013, pp. 70-73,
# 9 DFB Lasers Between 760 nm and 16 µm for Sensing Applications
W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth , Sensors, 10, 2010, pp. 2492-2510,
# 13 Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 µm wavelength range around room temperature
L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth and L. Worschech , Electron. Lett. 47, 1, Januar 2011, pp. 46-47.,
# 18 Monomode Interband Cascade Lasers at 5.2 µm for Nitric Oxide Sensing
M. von Edlinger, J. Scheuermann, R. Weih, C. Zimmermann, L. Naehle, M. Fischer, J. Koeth , IEEE Phot. Tech. Lett, 26, 5, 2014, pp. 480-482.,
# 22 Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm
S. Lundqvist, P. Kluczynski, R. Weih, M. von Edlinger, L. Naehle, M. Fischer, A. Bauer, S. Hoefling, J. Koeth, Appl. Opt., , 51, 25, 2012, pp. 6009-6013.,
# 26 Corrugated-sidewall interband cascade lasers with single-mode midwave-infrared emission at room temperature;
C.S. Kim, M. Kim, W.W. Bewley, J.R. Lindle, C.L. Canedy, J. Abell, I. Vurgaftman, J.R. Meyer , Appl. Phys. Lett., 95, 2009, 231103.,
# 36 Single mode interband cascade lasers based on lateral metal gratings
R. Weih, L. Naehle, Sven Hoefling, J. Koeth, M. Kamp , Appl. Phys. Lett., 105,7, 2014, pp. 071111.,
# 40 Comb-assisted spectroscopy of CO2 absorption profiles in the near- and mid-infrared regions
A. Gambetta, D. Gatti, A. Castrillo, N. Coluccelli, G. Galzerano, P. Laporta, L. Gianfrani, M. Marangoni, Appl. Phys. B, 109, 3, November 2012, pp. 385-390,
# 43 Chemical analysis of surgical smoke by infrared laser spectroscopy
Michele Gianella, Markus W. Sigrist , Appl. Phys. B, 109, 3, November 2012, pp. 485-496.,
# 53 CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell
K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, F.K. Tittel, Appl. Phys. B, 112, 4. September 2013, pp. 461-465.,
# 54 Demonstration of the self-mixing effect in interband cascade lasers
K. Bertling, Y.L. Lim, T. Taimre, D. Indjin, P. Dean, R. Weih, S. Hoefling, M. Kamp, M. von Edlinger, J. Koeth, A.D. Rakic, Appl. Phys. Lett., 103, 2013, 231107,
# 61 Demonstration of an Ethane Spectrometer for Methane Source Identification
T.I. Yacovitch, S.C. Herndon, J.R. Roscioli, C. Floerchinger, R.M. McGovern, M. Agnese, G. Petron, J. Kofler, C. Sweeney, A. Karion, S.A. Conley, E.A. Kort, L. Naehle, M. Fischer, L. Hildebrandt,.J. Koeth, J.B. McManus, D.D. Nelson, M.S. Zahniser, C.E. Kolb, Environ. Sci. Technol., 48, 2014, 8028-8034.,
# 62 High-sensitivity interference-free diagnostic for measurement of methane in shock tubes
R. Sur, S. Wang, K. Sun, D. F. Davidson, J. B. Jeffries, R. K. Hanson, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 156, May 2015, pp. 80-87,
# 64 Interband Cascade Lasers - Topical Review
I. Vurgaftman, R. Weih, M. Kamp, C.L. Canedy, C.S. Kim, M. Kim, W.W. Bewley, C.D. Merritt, J. Abell, S. Hoefling, Phys. D: Appl. Phys., 48, 2015, pp. 123001-12017.,
# 67 New Opportunities in Mid-Infrared Emission Control
P. Geiser, Sensors, 2015, pp. 22724-22736.,
# 74 Laser absorption diagnostic for measuring acetylene concentrations in shock tubes
I. Stranic, R. K. Hanson pp. 58-65, Journal of Quantitative Spectroscopy and Radiative Transfer, 142, July 2014, pp. 58 - 65,
# 75 Interband cascade laser sources in the mid-infrared for green photonics
J. Koeth, M. von Edlinger, J. Scheuermann, S. Becker, L. Nähle, M. Fischer, R. Weih, M. Kamp, S. Höfling, , Novel In-Plane Semiconductor Lasers , XV, 9767, 10th March 2016, 976712,
# 77 Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing
L. Dong, F. K. Tittel, C. Li, N. P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, R. J. Griffin , Optics Express, Vol. 24, Issue 6, 2016, pp. A528-A535.,
# 78 Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell
L. Dong,Y. Yu,.C. Li, S. So, F. Tittel, Optics Express, Vol. 23, Issue 15, 2015, pp. 19821-19830.,
# 79 InAs-based distributed feedback interband cascade lasers
M. Dallner, J. Scheuermann, L. Nähle, M. Fischer, J. Koeth, S. Höfling, M. Kamp, Appl. Phys. Lett., 107, 2015, 181105.,
# 80 Single-mode interband cascade lasers emitting below 2.8 μm
J. Scheuermann, R. Weih, M. v. Edlinger, L. Nähle, M. Fischer, J. Koeth, M. Kamp, S. Höfling , Appl. Phys. Lett. , 106, 2015, 161103.,
# 81 Dynamic spectral characteristics measurement of DFB interband cascade laser under injection current tuning
Z. Du, G. Luo, Y. An, J. Li, Appl. Phys. Lett., 109, 2016, 011903.,
# 82 Ppb-level mid-infrared ethane detection based on three measurement schemes using a 3.34 μm continuous-wave interband cascade laser
C. Li, C. Zheng, L. Dong, W. Ye, F. K. Tittel, Y. Wang , Appl. Phys. B, July 2016, 122:185.,
# 83 Mid-infrared surface plasmon polariton chemical sensing on fiber-coupled ITO coated glass
J. Martínez, A. Ródenas, M. Aguiló, T. Fernandez, J. Solis, F. Díaz , Optics Letters, Vol. 41, No. 11, 1th June 2016, pp. 2493 - 2496.,
# 85 Frequency modulation characteristics for interband cascade lasers emitting at 3 µm
J. Li, Z. Du, Y. An, Appl. Phys. B, 2015, 121:7–17.,
# 86 Detection of methyl mercaptan with a 3393‑nm distributed feedback interband cascade laser
Z. Du, W. Zhen, Z. Zhang, J. Li, N. Gao, Appl. Phys. B, 2016, 122 : 100,
# 87 Optical‑feedback cavity‑enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis
L. Richard, I. Ventrillard, G. Chau, K. Jaulin, E. Kerstel, D. Romanini , Appl. Phys. B, 2016, 122:247.,
# 89 Mars methane detection and variability at Gale crater
C. R. Webster, P. R. Mahaffy, S. K. Atreya, G. J. Flesch, M. A. Mischna, P.-Y. Meslin, K. A. Farley, P. G. Conrad,L. E. Christensen, A. A. Pavlov, J. Martín-Torres, M.-P. Zorzano, T. H. McConnochie, T. Owen, J. L. Eigenbrode, D. P. Glavin, A. Steele, C. A. Malespin, P. Douglas Archer Jr., B. Sutter, P. Coll, C. Freissinet, C. P. McKay, J. E. Moores, S. P. Schwenzer, J. C. Bridges, R. Navarro-Gonzalez, R. Gellert, M. T. Lemmon , the MSL Science Team, Science, Vol.347, Issue 6220, 23. Januar 2015 , pp. 415-417.,
# 90 Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 µm interband cascade laser
K. M. Manfred, G. A. D. Ritchie, N. Lang, J. Roepcke, J. H. van Helden , Appl. Phys. Lett. 106, 2015, 221106.,
# 92 Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy
Ch. Zheng, W. Ye, N. P. Sanchez, Ch. Li, L. Dong, Y. Wang, R. J. Griffin, F. K. Tittel , Sensors and Actuators B: Chemical, Vol. 244, June 2017, 365–372.,
# 93 Interband cascade laser-based optical transfer standard for atmospheric carbon monoxide measurements
J. A. Nwaboh, Z. Qu, O. Werhahn and V. Ebert , App. Optics, Vol. 56, No.11, 10. April 2017, pp. E84-E93.,
# 94 Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2 μm
J. J. Girard, R. M. Spearrin, C. S. Goldenstein, R. K. Hanson, Elsevier , Combustion and Flame, Vol.178, April 2017, pp. 158 – 167.,
# 95 Harsh-environment-resistant OH-vibrations-sensitive mid-infrared water-ice photonic sensor;
J. Martínez, A. Ródenas, A. Stake, M. Traveria, M. Aguiló, J. Solis, R. Osellame, T. Tanaka, B. Berton, S. Kimura, N. Rehfeld, F. Díaz , Adv. Mater. Technol., 2017, 1700085.,
# 100 Multiheterodyne spectroscopy using interband cascade lasers
L. A. Sterczewski, J. Westberg, C. L. Patrick, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, C. D. Merritt, I. Vurgaftman, J. R. Meyer and G. Wysocki, Opt. Eng., 57(1), Januar 2018, 011014,
# 101 Single-mode interband cascade laser multiemitter structure for two-wavelength absorption spectroscopy;
Scheuermann, R. Weih, S. Becker, M. Fischer, J. Koeth, S. Höfling, Opt. Eng., 57 (1), September 2017, 011008,
# 102 Laser detection
L. Hildebrandt, Hydrocarbon Engineering, Februar 2018,
# 103 Detection of ethanol using a tunable interband cascade laser at 3.345 μm
H. Gao, L. Xie, P. Gong et al. , Photonic Sensors, 2018, pp. 1 - 7,
# 104 Mid-infrared heterodyne phase-sensitive dispersion spectroscopy in flame measurements
L. Ma, Z. Wang, K.-P. Cheong, H. Ning, W. Ren , Proceedings of the Combustion Institute, 2018, pp. 1 - 8.,
# 106 Recent progress in laser‑based trace gas instruments: performance and noise analysis
J. B. McManus, M. S. Zahniser, D. D. Nelson et. al., Appl. Phys. B, 2015, 119: 203.,
# 107 Interband cascade laser-based ppbv-level mid-infrared methane detection using two digital lock-in amplifier schemes
F. Song, C. Zheng, D. Yu, Y. Zhou, W. Yan, W. Ye, Y. Zhang, Y. Wang, F. K. Tittel , Appl. Phys. B, 2018, 124:51.,
# 108 Dual-feedback mid-infrared cavity-enhanced absorption spectroscopy for H2CO detection using a radio-frequency electricallymodulated interband cascade laser
Q. He, C. Zheng, M. Lou, W. Ye, Y. Wang, F. K. Tittel , Opt. Expr, Vol.26, No.12, 2018, p. 15436.,
# 109 Performance enhancement of methane detection using a novel self-adaptive mid-infrared absorption spectroscopy technique
F. Song, C. Zheng, W. Yan, W. Ye, Y. Zhang, Y. Wang, F. K. Tittel, IEEE Phot. Journ., Vol.10, No.6, December 2018,
# 110 Optical fiber tip‑based quartz‑enhanced photoacoustic sensor for trace gas detection
Z. Li, Z. Wang, C. Wang, W. Ren, Appl. Phys. B, 2016, 122:147.,
# 112 Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy
L. Ma, L. Y. Lau, W. Ren, Appl. Phys. B, 2017, 123: 83.,
# 113 Characterization of temperature and soot volume fraction in laminar premixed flames: laser absorption / extinction measurement and two-dimensional computational fluid dynamics modeling;
L. Ma, H. Ning, J. Wu, K.-P. Cheong, W. Ren, Energy Fuels, Vol.32, 2018, pp. 12962 − 12970.,
# 115 A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser
Z. Wanga, Q. Wanga, J. Y.-L. Chingb, J. C.-Y. Wub, G. Zhangc, W. Rena , Sensors and Actuators, B 246, 2017, pp. 710–715.,
# 116 Nitric oxide analysis down to ppt levels by optical-feedback cavity-enhanced absorption spectroscopy
L. Richard, D. Romanini, I. Ventrillard, Sensors, MDPI, Vol.18, Iss.7, 2018,
# 117 The driver design for N2O gas detection system based on tunable interband cascade laser
L. Liao, J. Zhang, D. Dong, E3S Web Conf., Vol.78, 2019, 03002.,
# 118 Metrological quantification of CO in biogas using laser absorption spectroscopy and gas chromatography
J. A. Nwaboh, S. Persijn, K. Arrhenius, H. Bohlén, O. Werhahn, V. Ebert, Meas. Sci. Technol., Vol.29, No.9, 2018,
# 119 Interband cascade laser based quartz-enhanced photoacoustic sensor for multiple hydrocarbons detection
A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, V. Spagnolo, Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV , 26th January 2018, 105400C,
# 122 A streamlined approach to hybrid-chemistry modeling for a low cetane-number alternative jet fuel
N. H. Pinkowski, Y. Wang , S. J. Cassady , D. F. Davidson , R. K. Hanson , Combustion and Flame, Vol.208, October 2019, pp. 15-26.,
# 123 Multi-wavelength speciation of high-temperature 1-butene pyrolysis
N. H. Pinkowski, S. J. Cassady, D. F. Davidson, R. K. Hanson, Fuel, Vol. 244, 15th May 2019, pp. 269-281.,
# 124 Tomographic laser absorption imaging ofcombustion species and temperature in the mid-wave infrared
C. Wei, D. I. Pineda, C. S. Goldenstein, R. M. Spearrin, Opt. Exp., Vol. 26, Iss. 16, 2018, pp. 20944 - 20951.,
# 125 Time-resolved laser absorption imaging of ethane at 2 kHz in unsteady partially premixed flames
K. K. Schwarm, C. Wei, D. I. Pineda, R. M. Spearrin, Appl. Opt., Vol. 58, Iss. 21, Juli 2019, pp. 5656 - 5662.,
# 126 Contrast enhancement of surface layers with fast middle-infrared scanning
T. Kümmel, T. Teumer, P. Dörnhofer, F.-J. Methner, B. Wängler, M. Rädle, Heliyon, Vol. 5, Iss. 9, September 2019,
# 127 Narrow linewidth characteristics of interband cascade lasers
Y. Deng , B.-B. Zhao, X.-G. Wang, C. Wang, Appl. Phys. Lett., Vol.116, 2020, 201101,
# 128 Quartz-enhanced photoacoustic spectroscopy for hydrocarbon trace gas detection and petroleum exploration
A. Sampaoloa, G. Mendunib,P. Patimiscoa, M. Giglioa, V. M.N. Passaroc, L. Donga, H. Wua, F. K. Tittel, V. Spagnoloa, , Fuel, Vol.277, 2020,
# 129 Sub-ppb-level CH4 detection by exploiting a low-noise differential photoacoustic resonator with a room-temperature interband cascade laser
H. Zhen, Y. Liu, H. Lin, R. Kan, P. Patimisco, A. Sampaolo, M. Giglio, W. Zhu, J. Yu, F. K. Tittel, V. Spagnolo, Z. Chen, Opt. Expr., Vol. 28, Iss. 13, 2020, p. 19446.,
# 130 Simple electrical modulation scheme for laser feedback imaging
K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. v. Edlinger, J. Koeth, Aleksandar D. Rakic, IEEE Sens. Jour., Vol.16, No. 7, April, 1, 2016, pp. 1937-1942.,
# 131 Unveiling quantum-limited operation of interband cascade lasers
S. Borri , M. Siciliani de Cumis , S. Viciani , F. D’Amato, P. De Natale, APL Phot., Vol.5, Iss.3, 2020, 036101,
# 132 Light and microwaves in laser frequency combs: an interplay of spatio-temporal phenomena
M. Piccardo, D. Kazakov, B. Schwarz, P. Chevalier, A. Amirzhan, Y. Wang, F. Xie, K. Lascola, S. Becker, L. Hildebrandt, R. Weih, A. Belyanin, F. Capasso, San Jose, CA, USA, 2019, , 2019 Conference on Lasers and Electro-Optics (CLEO), 2019, pp. 1-2.,
# 133 Midinfrared sensor system based on tunable laser absorption spectroscopy for dissolved carbon dioxide analysis in the south china sea: system-level integration and deployment
Z. Liu, C. Zheng, T. Zhang, Y. Li, Q. Ren, C. Chen, W. Ye, Y. Zhang, Y. Wang, F. K. Tittel, Anal. Chem., Vol. 92, Iss. 12, 2020, pp. 8178 − 8185.,
# 134 Deep neural network inversion for 3D laser absorption imaging of methane in reacting flows
C. Wei, K. K. Schwarm, D. I. Pineda, R. M. Spearrin, , Opt. Lett, Vol.45, No.8, 2020, p. 2447.,
# 135 Interband cascade laser absorption of hydrogen chloride for high-temperature thermochemical analysis of fire-resistant polymer reactivity
D. I. Pineda, J. L. Urban, R. M. Spearrin,, , Appl. Opt., Vol.59, No.7, 2020, pp. 2141-2148.,
# 136 Temperature-dependent line mixing in the R-branch of the v3 band of methane
J. Li, A. P. Nair, K. K. Schwarm, D. I. Pineda, R. M. Spearrin, Journal of Quantitative Spectroscopy & Radiative Transfer, No.255, 2020, 107271.,
# 137 Line mixing and broadening of carbon dioxide by argon in the v3 bandhead near 4.2 μm at high temperatures and high pressures
D. D. Lee, F. A. Bendana, A. P. Nair, D. I. Pineda , R. M. Spearrin, , Journal of Quantitative Spectroscopy & Radiative Transfer, No. 253, 2020, 107135,
# 138 High efficiency mid-infrared interband cascade LEDs grown on low absorbing substrates emitting >5 mW of output power
N. Schäfer, J. Scheuermann, R. Weih, J. Koeth, S. Höfling, Opt. Eng., 58(11), 2019, 117106.,
# 141 Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration
H. Wu, L. Dong, X. Yin, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, Sensors and Actuators B: Chemical, Vol.297, 2019, 126753.,
# 142 Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser
A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, V. Spagnolo, Sensors and Actuators B: Chemical, Vol. 282, 2019, pp. 952-960.,
# 143 Optical detection of formaldehyde in air in the 3.6 µm range
M. Winkowski, T. Stacewicz, , Biomed Opt. Expr.,, Dezember 2020, 2020, pp. 7019–7031.,
# 144 Accurate analysis of HCl in biomethane using laser absorption spectroscopy and ion-exchange chromatography
J. A. Nwaboh, H. Meuzelaar, J. Liu, S. Persijn, J. Li, A. M. H. van der Veen, N. Chatellier, A. Papin, Z. Qu, O. Werhahna, V. Eberta, Analyst, Iss. 4, 2021.,
# 145 High resolution spectra of 13C ethane and propane isotopologues photoacoustically measured using interband cascade lasers near 3.33 and 3.38 μm, respectively
A. Loh, M. Wolff, Journal of Quantitative Spectroscopy & Radiative Transfer, 227, 2019, pp. 111 – 116.,
# 146 Multivariate analysis of photoacoustic spectra for the detection of short-chained hydrocarbon isotopologues
A. Loh, M. Wolff, MDPI, 2020, 25, 2266.,
# 147 Hydrogen sensor based on tunable diode laser absorption spectroscopy
V. Avetisov, O. Bjoroey, J. Wang, P. Geiser, K. G. Paulsen, Sensors, Vol.19, Iss.23, 2019, 5313.,
# 151 The interband cascade laser
J. R. Meyer, W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, I. Vurgaftman, Photonics, Vol. 7, No. 3 (75), 2020,
# 154 Measurements of H2O, CO2, CO and Static Temperature inside Rotating Detonation Engines
K. Thurmond, K. A. Ahmed, S. Vasu, AIAA, SciTech Forum, Session: Detonative Pressure Gain Combustion I, 2019,
# 157 MHz laser absorption spectroscopy via diplexed RF modulation for pressure, temperature, and species in rotating detonation rocket flows
A. Nair, D. Lee, D. I. Pineda, J. Kriesel, W. A. Hargus Jr., J. W. Bennewitz, S. A. Danczyk, R. M. Spearrin, Appl. Phys. B, Lasers and Optics, 126, 2020,
# 158 Optical Wireless Link Operated at the Wavelength of 4.0 µm with Commercially Available Interband Cascade Laser
J. Mikołajczyk, R. Weih, M. Motyka, Sensors, Vol. 21, 2021,
# 162 Methane leak detection by tunable laser spectroscopy and mid-infrared imaging
T. Strahl, J. Herbst, A. Lambrecht, E. Maier, J. Steinebrunner, J. Wöllenstein , Appl. Optics, Vol. 60, No. 15, 2021, C68-C75,
# 163 Towards a dTDLAS‑Based Spectrometer for Absolute HCl Measurements in Combustion Flue Gases and a Better Evaluation of Thermal Boundary Layer Effects
Z. Qu, J. Nwaboh, O. Werhahn, V. Ebert, Flow, Turbulence and Combustion, 106, 2021, 533 - 546,
# 166 Mid-infrared hyperchaos of interband cascade lasers
Y. Deng, ZF. Fan, BB. Zhao et al. , Light Sci. Appl., 11, 2022,
# 170 Mitigating Valence Intersubband Absorption in Interband Cascade Lasers
H. Knötig, J. Nauschütz, N. Opačak, S. Höfling, J. Koeth, R. Weih, B. Schwarz, Laser & Photonics Rev., 16, 2022, 2200156,
# 174 Dual-comb optical activity spectroscopy for the analysis of vibrational optical activity induced by external magnetic field
D. Peng, C. Gu, Z. Zuo, Y. Di,X. Zou, L. Tang, L. Deng1, D. Luo1, Y. Liu, W. Li, Nat. Commun., 14, 2023, 883,
# 176 Photoacoustic methane detection inside a MEMS microphone
T. Strahl, J. Steinebrunner, C. Weber, J. Wöllenstein, K. Schmitt, Photoacoustics, 29, 2023, 100428,
# 177 Distributed Feedback Interband Cascade Laser Based Laser Heterodyne Radiometer for Column Density of HDO and CH4 Measurements at Dunhuang, Northwest of China
X. Lu, Y. Huang, P. Wu, D. Liu, H. Ma, G. Wang, Z. Cao, Remote Sens., 14(6), 2022, 1489,
# 178 Quartz-Enhanced Photoacoustic Sensors for Detection of Eight Air Pollutants
R. De Palo, A. Elefante, G. Biagi, F. Paciolla, R. Weih, V. Villada, A. Zifarelli, M. Giglio, A. Sampaolo, V. Spagnolo, P. Patimisco, Adv. Phot. Res., Vo. 4, Iss. 6, 2023,
# 180 Rovibrational Polaritons in Gas-Phase Methane
A. D. Wright, J. C. Nelson, M. L. Weichman, J. Am. Chem. Soc., 145, 10, 2023, 5982–5987,
# 181 High-speed laser absorption measurements of carbon oxides in linear detonation channels
K. L. Fetter, B. R. Steavenson, B. M. Ng, A. Andrade, C. S. Combs, D. I. Pineda, AIAA Aviation 2023 Forum, 2023, 4384,
# 182 Quantitative volumetric laser absorption imaging of methane and temperature in flames utilizing line-mixing effects
C. Wei, K. K. Schwarm, D. I. Pineda, R. M. Spearrin, Proc. Comb. Inst., Vol. 39, Iss. 1, 2023, 1229-1237,
# 183 High-temperature absorption cross-sections and interference-immune sensing method for formaldehyde near 3.6-μm
N. M. Kuenning, I. C. Sanders, N. Q. Minesi, D. I. Pineda, R. M. Spearrin, J. Quant. Spec. Rad. Tr., Vol. 309, 2023, 108690,
# 184 Methyl methacrylate thermal decomposition: Modeling and laser spectroscopy of species time-histories behind reflected shock waves
I. C. Sanders, N. M. Kuenning, N. Q. Minesi, D. I. Pineda, R. M. Spearrin, Fuel, Vol. 335, 2023, 126846,
# 185 Comparison of photoacoustic spectroscopy and cavity ring-down spectroscopy for ambient methane monitoring at Hohenpeißenberg
M. Müller, S. Weigl, J. Müller-Williams, M. Lindauer, T. Rück, S. Jobst, R. Bierl, and F.-M. Matysik, Atmos. Meas. Tech., 16, 2023, 4263–4270,
# 187 Characterizing a sensitive compact mid-infrared photoacoustic sensor for methane, ethane and acetylene detection considering changing ambient parameters and bulk composition (N2, O2 and H2O)
J. Pangerl, M. Müller, T. Rück, S. Weigl, R. Bierl, Sens. Actuators B Chem., 352, 2022, 130962,
# 188 An Algorithmic Approach to Compute the Effect of Non-Radiative Relaxation Processes in Photoacoustic Spectroscopy
M. Müller, T. Rück, S. Jobst, J. Pangerl, S. Weigl, R. Bierl, F.-M. Matysik, Photoacoustics, 26, 2022, 100371,
# 189 Digital Twin of a photoacoustic trace gas sensor for monitoring methane in complex gas compositions
M. Müller, T. Rück, S. Jobst, J. Pangerl, S. Weigl, R. Bierl, F.-M. Matysik, Sens. Actuators B Chem., 378, 2023, 133119,
# 190 Laser-irradiating infrared attenuated total reflection spectroscopy of articular cartilage: Potential and challenges for diagnosing osteoarthritis
P. Krebs, M. Nägele, P. Fomina, V. Virtanen, E. Nippolainen, R. Shaikh, I.O. Afara, J. Töyräs, I. Usenov, T. Sakharova, V. Artyushenko, V. Tafintseva, J.H. Solheim, B. Zimmermann, A. Kohler, O. König, S. Saarakkala, B. Mizaikoff, Osteoarthritis and Cartilage Open, 6, 2024, 100466,
# 191 Wavelength Tuning in Resonant Cavity Interband Cascade Light Emitting Diodes (RCICLEDs) via Post Growth Cavity Length Adjustment
N. Schäfer, R. Weih, J. Scheuermann, F. Rothmayr, J. Koeth, S. Höfling, Sensors, 24, 2024, 3843,
# 192 Towards miniaturized gas sensors based on substrate-integrated hollow waveguides and interband cascade light emitting diodes
M. Hlavatsch, N. Hab, N. Schäfer, R. Weih, J. Koeth, B. Mizaikoff, Sens. Diagn., 2, 2023, 438-444,
Award Winning Technology

TDLAS in the mid-infrared

DFB Interband Cascade Laser technology outperforms other MIR laser technologies

Different laser technologies have been investigated in recent years to access the 3 μm to 6 μm wavelength range. Besides interband cascade lasers, GaSb-based type I interband diodes and intersubband quantum cascade lasers (QCL) have been a major focus of research.

While GaSb-based type I interband diodes have the disadvantage of decreasing hole confinement and increasing Auger recombination, fast phonon scattering loss impairs the use of intersubband QCLs.

An interband cascade laser, in contrast, uses optical transitions between an electron state in the conduction band and a hole state in the valence band in a cascade of Sb-based type-II QW structures. A broken-gap band edge alignment enables the tailoring of the emission wavelength by altering the cascade structures.

Interband-cascade technology is ideal for high-performance lasing in the entire range from 3 μm to
6 μm due to relatively wavelength-independent threshold powers. It combines high performance with reasonably low power consumption. Like all nanoplus lasers, these devices are manufactured without epitaxial overgrowth, avoiding impairment of ICL performance due to the insertion of patterning-induced defects within the laser layers.

nanoplus introduction interband cascade lasers

Watch a brief presentation on nanoplus DFB Interband Cascade Lasers (ICL) for Tunable Diode Laser Absorption Spectroscopy (TDLAS)

Enable YouTube videos once on this page
Enable all YouTube videos on all pages
nanoplus wins Prism Award

From the award ceremony at Photonics West 2012, nanoplus accepts the Prism Award in the green photonics and sustainble energy category for their DFB laser at 3 µm. Michael Lebby, GM and CTO of Translucent presented the award.

Prism Award Winners 2012

nanoplus DFB interband cascade lasers (ICLs) won the “Prism Award for Green Photonics and Sustainable Energy” in 2012. They cover the entire wavelength range from 3000 nm to 6000 nm. Many prominent gas species have their strongest absorption features in this window. They are now accessible for tunable diode laser spectroscopy in industry and research. SPIE and Photonics Media honored the laser development in a ceremony during Photonics West in San Francisco.

Get in touch

Contact us

Contact us

Do you require further advice? Let us know your needs.