Products
DFB Laser
ICL
FP Laser
SLD
MIR LED
Packaging
FAQs
Services
Applications
Applications by Gas
Applications by Industry
Tunable Diode Laser Absorption Spectroscopy
Literature
Contact
People
Sales Partners
Meet Us
Directions
About Us
History & Innovations
Quality Management & Sustainability
Cooperations
Management
People
News
Literature
Meet Us
Careers
PhD positions
Technischer Assistent
Vertriebsingenieur
Ausbildungsplatz Mikrotechnologe

2600 nm - 2900 nm Distributed Feedback Laser

Discover Our Wavelengths

Distributed Feedback Laser

2600 nm - 2900 nm Distributed Feedback Laser

Select your target wavelength at any wavelength between 2600 nm and 2900 nm. The table below presents typical specifications, available mountings as well as application references & further reading.

Specifications
Mountings & Accessories
Applications
Papers & Links
Specifications
parameters
symbol
unit
minimum
typical
maximum
parameters

operating wavelength (at Top, Iop)

symbol

λop

unit

nm

minimum
typical

0.1 nm

maximum
parameters

optical output power (at λop)

symbol

Pop

unit

mW

minimum
typical

2

maximum
parameters

operating current

symbol

Iop

unit

mA

minimum
typical

100

maximum
parameters

operating voltage

symbol

Vop

unit

V

minimum
typical

2.3

maximum
parameters

threshold current

symbol

Ith

unit

mA

minimum

30

typical

50

maximum

80

parameters

side mode suppression ratio

symbol

SMSR

unit

dB

minimum
typical

> 35

maximum
parameters

current tuning coefficient

symbol

CI

unit

nm / mA

minimum

0.01

typical

0.02

maximum

0.05

parameters

temperature tuning coefficient

symbol

CT

unit

nm / K

minimum

0.15

typical

0.20

maximum

0.28

parameters

operating chip temperature

symbol

Top

unit

°C

minimum

+20

typical

+25

maximum

+50

parameters

operating case temperature (non-condensing)

symbol

TC

unit

°C

minimum

-20

typical

+25

maximum

+50

parameters

storage temperature (non-condensing)

symbol

TS

unit

°C

minimum

-40

typical

+20

maximum

+80

Mountings & Accessories
SM-BTF - our fiber-coupled workhorse
  • availability: 760 nm - 5500 nm
  • TEC: integrated TEC
  • NTC: integrated NTC
  • plug&play: fiber-coupled beam
  • size: large footprint
  • costs: higher cost than free space
TO56 - the absolute basic
  • availability: 760 nm - 3000 nm
  • TEC: no TEC
  • NTC: no NTC
  • cap: uncoated cap (optional)
  • window: uncoated window (optional)
  • plug&play: collimation required
  • size: small footprint
  • costs: low cost
TO5 - our workhorse
  • availability: 760 nm - 3000 nm
  • TEC: integrated TEC
  • NTC: integrated NTC
  • cap: AR coated cap (optional)
  • window: AR coated window (optional)
  • plug&play: collimation required
  • size: small footprint
  • costs: low cost
c-mount - basic OEM integration
  • availability: 760 nm - 3000 nm
  • TEC: no TEC
  • NTC: no NTC
  • cap: NA
  • window: NA
  • plug&play: collimation required
  • size: low cost
chip on heatspreader - high-end OEM integration
  • availability: 760 nm - 6000 nm
  • TEC: no TEC
  • NTC: integrated NTC
  • cap: NA
  • window: NA
  • plug&play: collimation required
  • size: smallest footprint
  • costs: low cost
Heatsink for TO5 / TO66
  • availability: 760 nm - 6500 nm
  • NTC: integrated (optional)
  • heat distribution: warranted
  • connectors: for laser diode driver & temperature controller
  • posts: M6 thread for optical table
  • cage system: standard
  • collimation: none
Lens on cap
  • availability: 1850 nm - 5500 nm
  • heat distribution: none, use separate heatsink
  • connectors: TO66 connectors only
  • posts: none, use separate heatsink
  • cage system: none, use separate heatsink
  • collimation: high-end collimation, divergence < 4 mrad
Applications
Gas Detection
2600 nm - 2900 nm

Water vapour, hydrogen fluoride, hydrogen sulfide, nitrogen oxide, nitrous oxide and carbon dioxide show absorption features in the wavelength window between 2600 nm and 2900 nm.

[ 178 , 171 , 167 ]
Papers & Links
# 9 DFB Lasers Between 760 nm and 16 µm for Sensing Applications
W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth , Sensors, 10, 2010, pp. 2492-2510,
# 12 CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 µm
A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B, 90, 2008, pp. 619-628.,
# 30 Kalman filtering real-time measurements of H2O isotopologue ratios by laser absorption spectroscopy at 2.73 µm
T. Wu, W. Chen, E. Kerstel, E. Fertein, X. Gao, J. Koeth, Karl Roessner, D. Brueckner , Opt. Lett., 35, 5, 2010, pp. 634.636.,
# 33 DFB laser diodes in the wavelength range from 760 nm to 2.5 µm
J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, A. Forchel, Spectroch. Acta, Part A 60, 2004, pp. 3243-3247.,
# 44 High sensitivity Faraday rotation spectrometer for hydroxyl radical detection at 2.8 µm
W. Zhao, G. Wysocki, W. Chen, W. Zhang , Appl. Phys. B, 109, 3, November 2012, pp. 511-519.,
# 65 H2O temperature sensor for low-pressure flames using tunable Diode laser Absorption near 2.9 µm
S. Li, A. Farooq, R.K. Hanson, Meas. Sci. Technol., 22, 2011, pp. 125301-125311.,
# 69 A quartz-enhanced photoacoustic sensor for H2S trace-gas detection at 2.6µm
S. Viciani, M. Siciliani de Cumis, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D'Amato, V. Spagnolo, App. Phys. B, 119, 2015, pp. 21-27,
# 73 Time-multiplexed open-path TDLAS spectrometer for dynamic, sampling-free, Interstitial H218O and H216O vapor detection in ice clouds
B. Kuehnreich, S. Wagner, J.C. Habig, O. Moehler, H. Saathoff, V. Ebert , App. Phys. B, 119, 2015, pp. 177-187.,
# 76 Diode laser-based trace detection of hydrogen-sulfide at 2646.3 nm and hydrocarbon spectral interference effects
R. Sharma, C. Mitra, V. Tilak, 55(3) , Opt. Eng. , 55 (3), 14th March 2016, 037106,
# 96 Fiber-coupled 2.7 μm laser absorption sensor for CO2 in harsh combustion environments
R. M. Spearrin, C. S. Goldenstein, J. B. Jeffries and R. K. Hanson, Meas. , Sci. Technol., 24.April.2013, 055107.,
# 99 A photonic platform for donor spin qubits in silicon
K. J. Morse, R. J. S. Abraham, A. DeAbreu, C. Bowness, T. S. Richards, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, M. L. W. Thewalt, S. Simmons , Sci. Adv., Vol. 3, No.7, 2017, e1700930.,
# 126 Contrast enhancement of surface layers with fast middle-infrared scanning
T. Kümmel, T. Teumer, P. Dörnhofer, F.-J. Methner, B. Wängler, M. Rädle, Heliyon, Vol. 5, Iss. 9, September 2019,
# 155 Time-resolved CO2 concentration and ignition delay time measurements in the combustion processes of n-butane/hydrogen mixtures
H. Dong, P. Zhimin, D. Yanjun, Combustion and Flame, Vol. 207, 2019, 222 - 231,
# 156 Ignition-delay-time/time-resolved CO2-concentration measurements during the combustion of iC4H10/H2 mixtures
D. He, Z. Peng, Y. Ding, Fuel, Vol. 284, 2021,
# 159 Direct absorption spectroscopy baseline fitting for blended absorption features
J. M. Weisberger, J. P. Richter, R. A. Parker, P. E. DesJardin, Appl. Optics, 2018,
# 167 Analysis of the Stable Isotope Ratios (18O/16O, 17O/16O, and D/H) in Glacier Water by Laser Spectrometry
X. Cui, W. Chen, M. W. Sigrist, E. Fertein, P. Flament, K. De Bondt, N. Mattielli, analytical chemistry, 92, 2020, 4512−4517,
# 168 High resolution gas mid-infrared spectroscopy using circular multireflection (CMR) cell
T. Phan, D. Tran, J. Esper, C. Nixon, and G. Nehmetallah, Proc. SPIE, 11741, Infrared Technology and Applications XLVII, 2021,
# 171 Orion LAMS Laser Absorption Spectrometer for Human Spaceflight - Flight Unit Build and Test Results
J. Pohly, L. Christensen, M. Skow, K. Mansour, International Conference on Environmental Systems, July, 31st, 2020,
# 173 Quantification of Elevated Hydrogen Cyanide (HCN) Concentration Typical in a Residential Fire Environment Using Mid-IR Tunable Diode Laser
S. Ghanekar, G. P. Horn, R. M. Kesler, R. Rajasegar, J. Yoo and T. Lee, Appl. Spectrosc., 77(4), 2023, 382-392,
# 175 Proof-of-Concept Tabletop Tunable Diode Laser Absorption Spectrometer Instrument (TDLAS) for the Detection of H2O(v) in Lunar Regolith for the Canadian Multipurpose Autonomous Penetrator for Lunar Exploration (MAPLE) Project
A. Gmereka, Dr. A. Elleryb, Dr. E. Cloutisc, B. Thibodeaud, IAC, 73rd, 2022, Paris, France,
# 178 Quartz-Enhanced Photoacoustic Sensors for Detection of Eight Air Pollutants
R. De Palo, A. Elefante, G. Biagi, F. Paciolla, R. Weih, V. Villada, A. Zifarelli, M. Giglio, A. Sampaolo, V. Spagnolo, P. Patimisco, Adv. Phot. Res., Vo. 4, Iss. 6, 2023,
# 179 The Chicago Water Isotope Spectrometer (ChiWIS-lab): A tunable diode laser spectrometer for chamber-based measurements of water vapor isotopic evolution during cirrus formation
L. C. Sarkozy, B. W. Clouser, K. D. Lamb, E. J. Stutz, H. Saathoff, O. Möhler, V. Ebert, E. J. Moyer, Rev. Sci. Instrum., Vol. 91, Iss. 4, 2020, 045120,

Optical properties

Optical properties

Spectrum 2740 nm DFB

Typical spectrum of a nanoplus 2740 nm distributed feedback laser diode

Tuning 2740 nm DFB

Typical mode hop free tuning of a nanoplus 2740 nm distributed feedback laser diode

PI Curve 2740 nm DFB

Typical power, current and voltage characteristics of a nanoplus 2740 nm distributed feedback laser diode

Learn more

Product Brief

More information

nanoplus uses a unique and patented technology for DFB laser manufacturing. We apply a lateral metal grating along the ridge waveguide, which is independent of the material system. Read more about our patented distributed feedback technology.

Request for quotation

Your Requirement

Request for quotation

Send your message