Products
DFB Laser
ICL
FP Laser
SLD
MIR LED
Packaging
FAQs
Services
Applications
Applications by Gas
Applications by Industry
Tunable Diode Laser Absorption Spectroscopy
Literature
Contact
People
Sales Partners
Meet Us
Directions
About Us
History & Innovations
Quality Management & Sustainability
Cooperations
Management
People
News
Literature
Meet Us
Careers
Entwicklungsingenieur Quantenkaskadenlaser
Technischer Assistent
Vertriebsingenieur
Ausbildungsplatz Mikrotechnologe

2004 nm
TOP Wavelength

Discover Our Wavelengths

Distributed Feedback Laser

2004 nm
TOP Wavelength

DFB laser diodes at 2004.0 nm are used for carbon dioxide detection. Please have a look at the key features, specifications and applications.

Specifications
Mountings & Accessories
Applications
Papers & Links
Specifications
parameters
symbol
unit
minimum
typical
maximum
parameters

operating wavelength (at Top, Iop)

symbol

λop

unit

nm

minimum
typical

2004.0

maximum
parameters

optical output power (at λop)

symbol

Pop

unit

mW

minimum
typical

5

maximum
parameters

operating current

symbol

Iop

unit

mA

minimum
typical

100

maximum
parameters

operating voltage

symbol

Vop

unit

V

minimum
typical

2

maximum
parameters

threshold current

symbol

Ith

unit

mA

minimum

5

typical

10

maximum

25

parameters

side mode suppression ratio

symbol

SMSR

unit

dB

minimum
typical

> 35

maximum
parameters

current tuning coefficient

symbol

CI

unit

nm / mA

minimum

0.019

typical

0.025

maximum

0.035

parameters

temperature tuning coefficient

symbol

CT

unit

nm / K

minimum

0.18

typical

0.19

maximum

0.21

parameters

operating chip temperature

symbol

Top

unit

°C

minimum

+20

typical

+30

maximum

+45

parameters

operating case temperature (non-condensing)

symbol

TC

unit

°C

minimum

-20

typical

+25

maximum

+55

parameters

storage temperature (non-condensing)

symbol

TS

unit

°C

minimum

-40

typical

+20

maximum

+80

Mountings & Accessories
TO56 - the absolute basic
  • availability: 760 nm - 3000 nm
  • TEC: no TEC
  • NTC: no NTC
  • cap: uncoated cap (optional)
  • window: uncoated window (optional)
  • plug&play: collimation required
  • size: small footprint
  • costs: low cost
TO5 - our workhorse
  • availability: 760 nm - 3000 nm
  • TEC: integrated TEC
  • NTC: integrated NTC
  • cap: AR coated cap (optional)
  • window: AR coated window (optional)
  • plug&play: collimation required
  • size: small footprint
  • costs: low cost
c-mount - basic OEM integration
  • availability: 760 nm - 3000 nm
  • TEC: no TEC
  • NTC: no NTC
  • cap: NA
  • window: NA
  • plug&play: collimation required
  • size: low cost
SM-BTF - our fiber-coupled workhorse
  • availability: 760 nm - 5500 nm
  • TEC: integrated TEC
  • NTC: integrated NTC
  • plug&play: fiber-coupled beam
  • size: large footprint
  • costs: higher cost than free space
PM-BTF - high-end fiber coupling
  • availability: 1064 nm - 2050 nm
  • TEC: integrated TEC
  • NTC: integrated NTC
  • plug&play: fiber-coupled beam
  • size: large footprint
  • costs: higher costs than free space
chip on heatspreader - high-end OEM integration
  • availability: 760 nm - 6000 nm
  • TEC: no TEC
  • NTC: integrated NTC
  • cap: NA
  • window: NA
  • plug&play: collimation required
  • size: smallest footprint
  • costs: low cost
Heatsink for TO5 / TO66
  • availability: 760 nm - 6500 nm
  • NTC: integrated (optional)
  • heat distribution: warranted
  • connectors: for laser diode driver & temperature controller
  • posts: M6 thread for optical table
  • cage system: standard
  • collimation: none
Lens on cap
  • availability: 1850 nm - 5500 nm
  • heat distribution: none, use separate heatsink
  • connectors: TO66 connectors only
  • posts: none, use separate heatsink
  • cage system: none, use separate heatsink
  • collimation: high-end collimation, divergence < 4 mrad
Applications
CO2 & H2O
Isotope detection by NASA Mars Rover Curiosity: CO2 and H2O

NASA’s flagship Rover Curiosity detects CO2 and H2O isotopes based on their tunable laser spectrometer SAM. The analysis of soil samples is to determine whether Mars is or has been a suitable living environment. We are proud that the instrument uses a 2.78 µm nanoplus laser for this measurement.

[ 115 , 25 ]
CO2
Emission control of exhaust fumes: CO2

Remote sensing technologies identify unclean vehicles on the road. They help to control traffic-generated carbon dioxide emissions.

[ 115 ]
CO2 & NOx
Emission control of exhaust fumes: CO2 and NOx

Guided by environmental policies, the automobile industry is concerned to reduce the carbon footprint of vehicles. Automotive suppliers develop innovative combustion engines to control CO2 and NOx concentration in exhaust fumes.

[ 115 ]
CO2
Monitoring of breath gas: CO2

Helicobacter pylori bacteria cause stomach ulcer. Breath analysis diagnoses such an infection in a non-invasive way replacing disagreeable gastroscopies. It uses the CO2 concentration in exhaled breath as a biomarker.

[ 186 , 172 , 171 , 115 , 88 , 9 ]
CO2
Surveillance of volcanic activities: CO2

Early warning systems for volcanic eruptions continuously monitor CO2 by TDLS, as it is an abundant volcanic gas.

[ 115 ]
CO2
Emission control of greenhouse gases: CO2

Environmental policies have been implemented worldwide to reduce greenhouse gas emissions. According to the United States Environmental Protection Agency, human activities account for more than three quarters of CO2 emissions. They are mainly due to the combustion of fossil fuels for energy generation, transportation and industry. Remote sensing technologies have been introduced to quantify CO2 and CO emissions in atmosphere.

[ 178 , 115 , 105 , 93 ]
CO2
Quality control in natural gas pipelines: CO2

CO2 is a natural diluent in oil and gas deposits. When it reacts with H2S and H2O steel pipelines corrode. Real-time monitoring of CO2 at natural gas custody transfer points is necessary to avoid contaminated gas from flowing downstream. Immediate measures may be taken to purify the natural gas.

[ 115 ]
CO2 & CH4
Combustion control in high temperature processes: CO2 and CH4

Continuous monitoring of contents like CO2 or CH4 concentrations is essential for the efficiency of high-temperature processes in e. g. incinerators, furnaces or petrochemical refineries. Managing the CO2 content in combustion processes simultaneously reduces greenhouse gas emissions. This is also relevant for energy generating industries like coal burning power plants.

[ 154 , 124 , 121 , 115 , 112 , 111 , 96 , 94 , 62 , 45 , 40 , 35 , 12 ]
Papers & Links
# 4 Laser-Based Analyzers – Shining New Stars
P. Nesdore, Gases & Instrumentation, March/April 2011, pp. 30-33,
# 9 DFB Lasers Between 760 nm and 16 µm for Sensing Applications
W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth , Sensors, 10, 2010, pp. 2492-2510,
# 12 CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 µm
A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B, 90, 2008, pp. 619-628.,
# 16 Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482 nm
C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Journal of Quantitative Spectr. & Radiative Transfer, 130, 2013, pp. 100–111.,
# 19 Measurements of Mars Methane at Gale Crater by the SAM Tunable Laser Spectrometer on the Curiosity Rover
C.R. Webster, P.R. Mahaffy, S.K. Atreya, G.J. Flesch, K.A. Farley, 44th Lunar and Planetary Science Conference,, LPI Contribution No. 1719, March 18-22 2013, p. 1366.,
# 25 Isotope Ratios of H, C, and O in CO2 and H2O of the Martian Atmosphere
C.R. Webster, P.R. Mahaffy, G.J. Flesch, P.B. Niles, J. Jones, L.A. Leshin, S.K. Atreya, J.C. Stern, L.E. Christensen, T. Owen, H. Franz, R.O. Pepin, A. Steele, Science, 341, 6143, 2013, pp. 260-263.,
# 35 TDLAS-based sensors for in situ measurement of syngas composition in a pressurized, oxygen-blown, entrained flow coal gasifier
R. Sur, K. Sun, J.B. Jeffries, R.K. Hanson, R.J. Pummill, T. Waind, D.R. Wagner, K.J. Whitty, 2014, Appl. Phys. B, 116, 1, 2014, pp. 33-42,
# 38 Monolithic widely tunable laser diodes for gas sensing at 2100 nm
N. Koslowski, A. Heger, K. Roesner, M. Legge, L. Hildebrandt, J. Koeth, Novel In-Plane Semiconductor Lasers, XII, 2013, 864008,
# 40 Comb-assisted spectroscopy of CO2 absorption profiles in the near- and mid-infrared regions
A. Gambetta, D. Gatti, A. Castrillo, N. Coluccelli, G. Galzerano, P. Laporta, L. Gianfrani, M. Marangoni, Appl. Phys. B, 109, 3, November 2012, pp. 385-390,
# 45 Measurements of CO2 in a multipass cell and in a hollow-core photonic bandgap fiber at 2 µm
J. A. Nwaboh, J. Hald, J. K. Lyngsø, J. C. Petersen, O. Werhahn , Appl. Phys. B, 109, 3, November 2012, pp. 187 - 194,
# 50 Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring;
J. J. Scherer, J. B. Paul, H. J. Jost, Marc L. Fischer, Appl. Phys. B, 109, 3, November 2017, pp. 271-277.,
# 63 Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits
C. Wang and P. Sahay, Sensors, 9, 2009, 8230 - 8262,
# 88 Oxygen-18 isotope of breath CO2 linking to erythrocytes carbonic anhydrase activity: a biomarker for pre-diabetes and type 2 diabetes
C. Ghosh, G. D. Banik, A. Maity, S. Som, A. Chakraborty, C. Selvan, S. Ghosh, S. Chowdhury, M. Pradhan , Scientific Reports, 2015, 5 : 8137.,
# 139 Development of a Method for Non‐Invasive Measurement of Absolute Pressure in Partially Transparent Containers with Carbonated Beverages
M. Grafen, M. Falkenstein, A. Ostendorf, C. Esen, Chemie, Ingenieur, Technik, Vol. 92, Iss. 11, Spec. Iss.: Bioraffinerien, 2020, pp 1830 - 1839.,

Optical properties

nanoplus distributed feedback lasers show outstanding spectral, tuning and electrical properties.

Spectrum 2004 nm DFB

Typical spectrum of a nanoplus 2004 nm distributed feedback laser diode

Tuning 2004 nm DFB

Typical mode hop free tuning of a nanoplus 2004 nm distributed feedback laser diode

PI Curve 2004 nm DFB

Typical power, current and voltage characteristics of a nanoplus 2004 nm distributed feedback laser diode

Learn more

Product Brief

More information

nanoplus uses a unique and patented technology for DFB laser manufacturing. We apply a lateral metal grating along the ridge waveguide, which is independent of the material system. Read more about our patented distributed feedback technology.

Request for quotation

Your Requirement

Request for quotation

Send your message