Products
DFB Laser
ICL
FP Laser
MIR LED
SLD
Packaging
FAQs
Services
Applications
Applications by Gas
Applications by Industry
Tunable Diode Laser Absorption Spectroscopy
Literature
Technical Notes
Contact
People
Sales Partners
Meet Us
Directions
About Us
History & Innovations
Quality Management & Sustainability
Cooperations
Management
People
News
Literature
Meet Us
Careers
Technischer Assistent
Ausbildungsplatz Mikrotechnologe

2330 nm & 2334 nm
TOP Wavelength

Discover Our Wavelengths

Distributed Feedback Laser

2330 nm & 2334 nm
TOP Wavelength

DFB laser diodes at 2330 nm and 2334 nm are used for carbon monoxide detection. Please have a look at the key features, specifications and applications.
Specifications
Mountings & Accessories
Applications
Papers & Links
Specifications
parameters
symbol
unit
minimum
typical
maximum
parameters
operating wavelength (at Top, Iop)
symbol
λop
unit
nm
minimum
typical
2330 & 2334
maximum
parameters
optical output power (at λop)
symbol
Pop
unit
mW
minimum
typical
6
maximum
parameters
operating current
symbol
Iop
unit
mA
minimum
typical
100
maximum
parameters
operating voltage
symbol
Vop
unit
V
minimum
typical
2.3
maximum
parameters
threshold current
symbol
Ith
unit
mA
minimum
5
typical
10
maximum
22
parameters
side mode suppression ratio
symbol
SMSR
unit
dB
minimum
typical
> 35
maximum
parameters
current tuning coefficient
symbol
CI
unit
nm / mA
minimum
0.022
typical
0.04
maximum
0.07
parameters
temperature tuning coefficient
symbol
CT
unit
nm / K
minimum
0.19
typical
0.20
maximum
0.23
parameters
operating chip temperature
symbol
Top
unit
°C
minimum
+20
typical
+30
maximum
+45
parameters
operating case temperature (non-condensing)
symbol
TC
unit
°C
minimum
-20
typical
+25
maximum
+55
parameters
storage temperature (non-condensing)
symbol
TS
unit
°C
minimum
-40
typical
+20
maximum
+80
Mountings & Accessories
TO56 - the absolute basic
  • availability: 760 nm - 3000 nm
  • TEC: no TEC
  • NTC: no NTC
  • cap: uncoated cap (optional)
  • window: uncoated window (optional)
  • plug&play: collimation required
  • size: small footprint
  • costs: low cost
TO5 - our workhorse
  • availability: 760 nm - 3000 nm
  • TEC: integrated TEC
  • NTC: integrated NTC
  • cap: AR coated cap (optional)
  • window: AR coated window (optional)
  • plug&play: collimation required
  • size: small footprint
  • costs: low cost
c-mount - basic OEM integration
  • availability: 760 nm - 3000 nm
  • TEC: no TEC
  • NTC: no NTC
  • cap: NA
  • window: NA
  • plug&play: collimation required
  • size: low cost
SM-BTF - our fiber-coupled workhorse
  • availability: 760 nm - 5500 nm
  • TEC: integrated TEC
  • NTC: integrated NTC
  • plug&play: fiber-coupled beam
  • size: large footprint
  • costs: higher cost than free space
chip on heatspreader - high-end OEM integration
  • availability: 760 nm - 6000 nm
  • TEC: no TEC
  • NTC: integrated NTC
  • cap: NA
  • window: NA
  • plug&play: collimation required
  • size: smallest footprint
  • costs: low cost
Heatsink for TO5 / TO66
  • availability: 760 nm - 6500 nm
  • NTC: integrated (optional)
  • heat distribution: warranted
  • connectors: for laser diode driver & temperature controller
  • posts: M6 thread for optical table
  • cage system: standard
  • collimation: none
Lens on cap
  • availability: 1850 nm - 6500 nm
  • heat distribution: none, use separate heatsink
  • connectors: TO66 connectors only
  • posts: none, use separate heatsink
  • cage system: none, use separate heatsink
  • collimation: high-end collimation, divergence < 4 mrad
Applications
CO
Monitoring of breath gas: CO

The relatively new research field of breath analysis defines CO concentration in exhaled breath as a biomarker for e. g. respiratory infections and asthma.

[ 63 ]
CO
Early fire detection: CO

Early fire detection technologies rely on highly sensitive detection of carbon monoxide. Coal-fired power plants, steel mills or biomass deposits use these smoke detectors to increase process and workers safety.

O2 & CO
Combustion control in high temperature processes: O2 and CO

Oxygen control enhances process and cost efficiency of incinerators. Oxidation requires excess air. But too much air cools down the combustion and increases the amount of CO in the flue gas. Real-time and in situ monitoring helps to optimize the oxygen content in combustion processes.

[ 157 , 154 , 3 ]
CO
Combustion control in high temperature processes: CO

­­CO is a major element in high temperature processes. Optimizing CO concentration in flue gas increases combustion efficiency. Simultaneously, it reduces greenhouse gas emissions. CO detection at long wavelengths like 2.8 μm and 4.3 μm uses stronger vibrational absorption features than the shorter wavelength ranges. This effect increases the sensitivity of the detector and allows using measurement set ups with short path lengths. 

[ 157 , 154 , 124 , 110 , 48 , 35 , 12 , 3 ]
Papers & Links
# 110 Optical fiber tip‑based quartz‑enhanced photoacoustic sensor for trace gas detection
Z. Li, Z. Wang, C. Wang, W. Ren, Appl. Phys. B, 2016, 122:147.,
# 63 Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits
C. Wang and P. Sahay, Sensors, 9, 2009, 8230 - 8262,
# 50 Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring;
J. J. Scherer, J. B. Paul, H. J. Jost, Marc L. Fischer, Appl. Phys. B, 109, 3, November 2017, pp. 271-277.,
# 48 Absolute, spatially resolved, in situ CO profiles in atmospheric laminar counter-flow diffusion flames using 2.3 µm TDLAS
S. Wagner, M. Klein, T. Kathrotia, U. Riedel, T. Kissel, A. Dreizler, V. Ebert , Appl. Phys. B, 109, 3, November 2012, pp. 533-540.,
# 43 Chemical analysis of surgical smoke by infrared laser spectroscopy
Michele Gianella, Markus W. Sigrist , Appl. Phys. B, 109, 3, November 2012, pp. 485-496.,
# 35 TDLAS-based sensors for in situ measurement of syngas composition in a pressurized, oxygen-blown, entrained flow coal gasifier
R. Sur, K. Sun, J.B. Jeffries, R.K. Hanson, R.J. Pummill, T. Waind, D.R. Wagner, K.J. Whitty, 2014, Appl. Phys. B, 116, 1, 2014, pp. 33-42,
# 32 Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 µm above room temperature for application in tunable diode laser absorption spectroscopy
A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, A. Garnache, Appl. Opt., 45, 20, pp. 4957-4965,
# 9 DFB Lasers Between 760 nm and 16 µm for Sensing Applications
W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth , Sensors, 10, 2010, pp. 2492-2510,
# 3 Gas monitoring in the process industry using diode laser spectroscopy
I. Linnerud, P. Kaspersen, T. Jaeger, Appl. Phys. B, 67, 1998, pp. 297-305,

Optical properties

nanoplus distributed feedback lasers show outstanding spectral, tuning and electrical properties.
Spectrum 2334 nm DFB

Typical spectrum of a nanoplus 2334 nm distributed feedback laser diode

Tuning 2334 nm DFB

Typical mode hop free tuning of a nanoplus 2334 nm distributed feedback laser diode

PI Curve 2334 nm DFB

Typical power, current and voltage characteristics of a nanoplus 2334 nm distributed feedback laser diode

Learn more

Product Brief

More information
nanoplus uses a unique and patented technology for DFB laser manufacturing. We apply a lateral metal grating along the ridge waveguide, which is independent of the material system. Read more about our patented distributed feedback technology.
Request for quotation

Your Requirement

Request for quotation
Send your message