Products
DFB Laser
ICL
FP Laser
SLD
MIR LED
Packaging
FAQs
Services
Applications
Applications by Gas
Applications by Industry
Tunable Diode Laser Absorption Spectroscopy
Literature
Contact
People
Sales Partners
Meet Us
Directions
About Us
History & Innovations
Quality Management & Sustainability
Cooperations
Management
People
News
Literature
Meet Us
Careers
PhD positions
Technischer Assistent
Vertriebsingenieur
Ausbildungsplatz Mikrotechnologe

2330 nm & 2334 nm
TOP Wavelength

Discover Our Wavelengths

Distributed Feedback Laser

2330 nm & 2334 nm
TOP Wavelength

DFB laser diodes at 2330 nm and 2334 nm are used for carbon monoxide detection.

Please have a look at the key features, specifications and applications.

Specifications
Mountings & Accessories
Applications
Papers & Links
Specifications
parameters
symbol
unit
minimum
typical
maximum
parameters

operating wavelength (at Top, Iop)

symbol

λop

unit

nm

minimum
typical

2330 & 2334

maximum
parameters

optical output power (at λop)

symbol

Pop

unit

mW

minimum
typical

6

maximum
parameters

operating current

symbol

Iop

unit

mA

minimum
typical

100

maximum
parameters

operating voltage

symbol

Vop

unit

V

minimum
typical

2.3

maximum
parameters

threshold current

symbol

Ith

unit

mA

minimum

5

typical

10

maximum

22

parameters

side mode suppression ratio

symbol

SMSR

unit

dB

minimum
typical

> 35

maximum
parameters

current tuning coefficient

symbol

CI

unit

nm / mA

minimum

0.022

typical

0.04

maximum

0.07

parameters

temperature tuning coefficient

symbol

CT

unit

nm / K

minimum

0.19

typical

0.20

maximum

0.23

parameters

operating chip temperature

symbol

Top

unit

°C

minimum

+20

typical

+30

maximum

+45

parameters

operating case temperature (non-condensing)

symbol

TC

unit

°C

minimum

-20

typical

+25

maximum

+55

parameters

storage temperature (non-condensing)

symbol

TS

unit

°C

minimum

-40

typical

+20

maximum

+80

Mountings & Accessories
TO56 - the absolute basic
  • availability: 760 nm - 3000 nm
  • TEC: no TEC
  • NTC: no NTC
  • cap: uncoated cap (optional)
  • window: uncoated window (optional)
  • plug&play: collimation required
  • size: small footprint
  • costs: low cost
TO5 - our workhorse
  • availability: 760 nm - 3000 nm
  • TEC: integrated TEC
  • NTC: integrated NTC
  • cap: AR coated cap (optional)
  • window: AR coated window (optional)
  • plug&play: collimation required
  • size: small footprint
  • costs: low cost
c-mount - basic OEM integration
  • availability: 760 nm - 3000 nm
  • TEC: no TEC
  • NTC: no NTC
  • cap: NA
  • window: NA
  • plug&play: collimation required
  • size: low cost
SM-BTF - our fiber-coupled workhorse
  • availability: 760 nm - 5500 nm
  • TEC: integrated TEC
  • NTC: integrated NTC
  • plug&play: fiber-coupled beam
  • size: large footprint
  • costs: higher cost than free space
chip on heatspreader - high-end OEM integration
  • availability: 760 nm - 6000 nm
  • TEC: no TEC
  • NTC: integrated NTC
  • cap: NA
  • window: NA
  • plug&play: collimation required
  • size: smallest footprint
  • costs: low cost
Heatsink for TO5 / TO66
  • availability: 760 nm - 6500 nm
  • NTC: integrated (optional)
  • heat distribution: warranted
  • connectors: for laser diode driver & temperature controller
  • posts: M6 thread for optical table
  • cage system: standard
  • collimation: none
Lens on cap
  • availability: 1850 nm - 5500 nm
  • heat distribution: none, use separate heatsink
  • connectors: TO66 connectors only
  • posts: none, use separate heatsink
  • cage system: none, use separate heatsink
  • collimation: high-end collimation, divergence < 4 mrad
Applications
CO
Monitoring of breath gas: CO

The relatively new research field of breath analysis defines CO concentration in exhaled breath as a biomarker for e. g. respiratory infections and asthma.

[ 63 ]
CO
Early fire detection: CO

Early fire detection technologies rely on highly sensitive detection of carbon monoxide. Coal-fired power plants, steel mills or biomass deposits use these smoke detectors to increase process and workers safety.

O2 & CO
Combustion control in high temperature processes: O2 and CO

Oxygen control enhances process and cost efficiency of incinerators. Oxidation requires excess air. But too much air cools down the combustion and increases the amount of CO in the flue gas. Real-time and in situ monitoring helps to optimize the oxygen content in combustion processes.

[ 157 , 154 , 3 ]
CO
Combustion control in high temperature processes: CO

­­CO is a major element in high temperature processes. Optimizing CO concentration in flue gas increases combustion efficiency. Simultaneously, it reduces greenhouse gas emissions. CO detection at long wavelengths like 2.8 μm and 4.3 μm uses stronger vibrational absorption features than the shorter wavelength ranges. This effect increases the sensitivity of the detector and allows using measurement set ups with short path lengths. 

[ 157 , 154 , 124 , 110 , 48 , 35 , 12 , 3 ]
Papers & Links
# 3 Gas monitoring in the process industry using diode laser spectroscopy
I. Linnerud, P. Kaspersen, T. Jaeger, Appl. Phys. B, 67, 1998, pp. 297-305,
# 9 DFB Lasers Between 760 nm and 16 µm for Sensing Applications
W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth , Sensors, 10, 2010, pp. 2492-2510,
# 32 Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 µm above room temperature for application in tunable diode laser absorption spectroscopy
A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, A. Garnache, Appl. Opt., 45, 20, pp. 4957-4965,
# 35 TDLAS-based sensors for in situ measurement of syngas composition in a pressurized, oxygen-blown, entrained flow coal gasifier
R. Sur, K. Sun, J.B. Jeffries, R.K. Hanson, R.J. Pummill, T. Waind, D.R. Wagner, K.J. Whitty, 2014, Appl. Phys. B, 116, 1, 2014, pp. 33-42,
# 43 Chemical analysis of surgical smoke by infrared laser spectroscopy
Michele Gianella, Markus W. Sigrist , Appl. Phys. B, 109, 3, November 2012, pp. 485-496.,
# 48 Absolute, spatially resolved, in situ CO profiles in atmospheric laminar counter-flow diffusion flames using 2.3 µm TDLAS
S. Wagner, M. Klein, T. Kathrotia, U. Riedel, T. Kissel, A. Dreizler, V. Ebert , Appl. Phys. B, 109, 3, November 2012, pp. 533-540.,
# 50 Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring;
J. J. Scherer, J. B. Paul, H. J. Jost, Marc L. Fischer, Appl. Phys. B, 109, 3, November 2017, pp. 271-277.,
# 63 Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits
C. Wang and P. Sahay, Sensors, 9, 2009, 8230 - 8262,
# 110 Optical fiber tip‑based quartz‑enhanced photoacoustic sensor for trace gas detection
Z. Li, Z. Wang, C. Wang, W. Ren, Appl. Phys. B, 2016, 122:147.,

Optical properties

nanoplus distributed feedback lasers show outstanding spectral, tuning and electrical properties.

Spectrum 2334 nm DFB

Typical spectrum of a nanoplus 2334 nm distributed feedback laser diode

Tuning 2334 nm DFB

Typical mode hop free tuning of a nanoplus 2334 nm distributed feedback laser diode

PI Curve 2334 nm DFB

Typical power, current and voltage characteristics of a nanoplus 2334 nm distributed feedback laser diode

Learn more

Product Brief

More information

nanoplus uses a unique and patented technology for DFB laser manufacturing. We apply a lateral metal grating along the ridge waveguide, which is independent of the material system. Read more about our patented distributed feedback technology.

Request for quotation

Your Requirement

Request for quotation

Send your message