Distributed Feedback Lasers: 2800 nm - 4000 nm

nanoplus offers DFB interband cascade lasers at any wavelength between 2800 nm and 4000 nm.

TO66 header

Key features of nanoplus distributed feedback interband cascade lasers

  • monomode
  • continuous wave
  • room temperature
  • low power consumption
  • tunable
  • custom wavelengths

Why choose nanoplus distributed feedback interband cascade lasers

  • stable longitudinal and transversal single mode emission
  • precise selection of target wavelength
  • narrow laser line width
  • mode-hop-free wavelength tunability
  • fast wavelength tuning
  • typically > 5 mW output power
  • small size
  • easy usability
  • high efficiency
  • long-term stability

For more than 20 years nanoplus has been the technology leader for lasers in gas sensing. We produce lasers at large scale at our own fabrication sites in Gerbrunn and Meiningen. nanoplus cooperates with the leading system integrators in the TDLAS based analyzer industry. More than 30,000 installations worldwide prove the reliability of nanoplus lasers.

Quick description of nanoplus distributed feedback laser technology

nanoplus uses a unique and patented technology for DFB laser manufacturing. We apply a lateral metal grating along the ridge waveguide, which is independent of the material system. Read more about our patented distributed feedback technology.

Related information for nanoplus DFB interband cascade lasers from 2800 nm to 4000 nm


Mountings & Accessories


Papers & Links

The following table summarize the typical DFB laser specifications in the 2800 nm to 4000 nm range:

operating wavelength (at Top, Iop)λopnm0.1 nm
optical output power (at λop) PopmW10
operating currentIopmA120
operating voltageVopV5
threshold currentIthmA153050
side mode suppression ratioSMSRdB> 35
current tuning coefficientCInm / mA0.10
temperature tuning coefficientCTnm / K0.35
operating chip temperatureTop°C+10+20+50
operating case temperature*TC°C-20+25+50
storage temperature*TS°C-30+20+70

* non-condensing

We offer enhanced specifications for distributed feedback lasers at 3240.0 nm and 3270.0 nm for methane detection as well as at 3345 nm and 3375 nm for ethane detection. Please check our Top Wavelengths section for more information.

nanoplus distributed feedback lasers show outstanding spectral, tuning and electrical properties. They are demonstrated in figures 1 - 3. Click on the graphics to enlarge.

Figure 1: Spectrum of a nanoplus 3270 nm DFB interband cascade laser
Figure 1: Spectrum of a nanoplus 3270 nm DFB interband cascade laser
Figure 2: Mode hop free tuning of a nanoplus 3270 nm DFB interband cascade laser
Figure 2: Mode hop free tuning of a nanoplus 3270 nm DFB interband cascade laser
Figure 3: Typical power, current and voltage characteristics of a nanoplus 3270 nm DFB interband cascade laser
Figure 3: Typical power, current and voltage characteristics of a nanoplus 3270 nm DFB interband cascade laser

If you are uncertain whether you require a distributed feedback laser, compare the specifications with our Fabry-Pérot lasers or contact us.

Free space mounting

nanoplus developed a specific free space package for interband cascade lasers. The TO66 header disposes of an extra large thermo-electric cooler. It is hermetically sealed with a black cap and anti reflection coated window. Please click on the mounting for detailed specifications and dimensions.

TO66 header
with TEC and thermistor,
black cap and AR coated window
TO66 header

OEM mounting

For our OEM customers we offer a very small footprint package that is easy to integrate.

chip on heatspreader with NTC, without TEC


TO66 heatsink
TO66 heatsink

The nanoplus TO66 heatsink facilitates your laser set up by:

  • improved heat distribution
  • connectors for laser diode driver
  • connectors for temperature controller
  • M6 thread for optical posts
  • easy use with standard cage systems

Carbon dioxide, nitric oxide, water vapour and most hydrocarbons, like methane, acetylene, formaldehyde and ethane have their strongest absorption features between 3000 nm and 6000 nm.

For detailed absorption data, please refer to HITRAN database and to our Applications by Gas section.

Please find below a selection of related papers from our literature list.

Let us know if you published a paper with our lasers. We will be happy to include it in our literature list.

#2 Advanced Gas Sensing Applications Above 3 µm with DFB Laser Diodes;
L. Naehle, L. Hildebrandt, M. Fischer, J. Koeth, Gases & Instrumentation, March/April 2012, pp. 25-28.

#5 DFB lasers exceeding 3 µm for industrial applications;
L. Naehle, L. Hildebrandt, Laser+Photonics 2012, pp. 78-80.

#7 DFB laser diodes expand hydrocarbon sensing beyond 3 µm;
L. Hildebrandt, L. Naehle, Laser Focus World, January 2012, pp. 87-90.

#8 ICLs open opportuneties for mid-IR seinsing;
L. Naehle, L. Hildebrandt, M. Kamp, S. Hoefling, Laser Focus World, May 2013, pp. 70-73.

#9 DFB Lasers Between 760 nm and 16 µm for Sensing Applications;
W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, J. Koeth, Sensors 2010, 10, pp. 2492-2510.

#13 Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 µm wavelength range around room temperature;
L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth and L. Worschech, Electron. Lett. 47, 1, Jan 2011, pp. 46-47.

#22 Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm;
S. Lundqvist, P. Kluczynski, R. Weih, M. von Edlinger, L. Naehle, M. Fischer, A. Bauer, S. Hoefling, J. Koeth, Appl. Opt., 51, 25, 2012, pp. 6009-6013.

#26 Corrugated-sidewall interband cascade lasers with single-mode midwave-infrared emission at room temperature;
C.S. Kim, M. Kim, W.W. Bewley, J.R. Lindle, C.L. Canedy, J. Abell, I. Vurgaftman, J.R. Meyer, Appl. Phys. Lett., 95, 2009, 231103.

#36 Single mode interband cascade lasers based on lateral metal gratings;
R. Weih, L. Naehle, Sven Hoefling, J. Koeth, M. Kamp, Appl. Phys. Lett., 105, 7, 2014, pp. 071111.

#43 Chemical analysis of surgical smoke by infrared laser spectroscopy;
Michele Gianella, Markus W. Sigrist, Appl. Phys. B, 109, 3, Nov. 2012, pp. 485-496.

#53 CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell;
K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, F.K. Tittel, Appl. Phys. B, 112, 4, Sept. 2013, pp. 461-465.

#54 Demonstration of the self-mixing effect in interband cascade lasers;
K. Bertling, Y.L. Lim, T. Taimre, D. Indjin, P. Dean, R. Weih, S. Hoefling, M. Kamp, M. von Edlinger, J. Koeth, A.D. Rakic, Appl. Phys. Lett., 103, 2013, 231107.

#61 Demonstration of an Ethane Spectrometer for Methane Source Identification;
T.I. Yacovitch, S.C. Herndon, J.R. Roscioli, C. Floerchinger, R.M. McGovern, M. Agnese, G. Petron, J. Kofler, C. Sweeney, A. Karion, S.A. Conley, E.A. Kort, L. Naehle, M. Fischer, L. Hildebrandt,.J. Koeth, J.B. McManus, D.D. Nelson, M.S. Zahniser, C.E. Kolb, Environ. Sci. Technol., 48, 2014, 8028-8034.

#62 High-sensitivity interference-free diagnostic for measurement of methane in shock tubes;
R. Sur, S. Wang, K. Sun, D. F. Davidson, J. B. Jeffries, R. K. Hanson, J. of Quant. Spectrosc. and Rad. Transfer, Vol. 156, May 2015, pp. 80–87.

#64 Interband Cascade Lasers - Topical Review;
I. Vurgaftman, R. Weih, M. Kamp, C.L. Canedy, C.S. Kim, M. Kim, W.W. Bewley, C.D. Merritt, J. Abell, S. Hoefling, Phys. D: Appl. Phys. 48, 2015, pp. 123001-12017.

#67 New Opportunities in Mid-Infrared Emission Control;
P. Geiser, Sensors, 2015, pp. 22724-22736.

#74 Laser absorption diagnostic for measuring acetylene concentrations in shock tubes;
I. Stranic, R. K. Hanson, J. of Quant. Spectrosc. and Rad. Transfer, 142, July 2014, pp. 58-65

#75 Interband cascade laser sources in the mid-infrared for green photonics;
J. Koeth, M. von Edlinger, J. Scheuermann, S. Becker, L. Nähle, M. Fischer, R. Weih, M. Kamp, S. Höfling, Proc. SPIE 9767, Novel In-Plane Semiconductor Lasers XV, 976712, March 10, 2016.

#77 Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing;
L. Dong, F. K. Tittel, C. Li, N. P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, R. J. Griffin; Optics Express Vol. 24, Issue 6, 2016, pp. A528-A535.

#78 Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell;
L. Dong,Y. Yu,.C. Li, S. So, F. Tittel, Optics Express Vol. 23, Issue 15, 2015, pp. 19821-19830.

#80 Single-mode interband cascade lasers emitting below 2.8 μm;
J. Scheuermann, R. Weih, M. v. Edlinger, L. Nähle, M. Fischer, J. Koeth, M. Kamp, S. Höfling, Appl. Phys. Lett. 106, 2015, 161103.

#81 Dynamic spectral characteristics measurement of DFB interband cascade laser under
injection current tuning
Z. Du, G. Luo, Y. An, J. Li, Appl. Phys. Lett. 109, 2016, 011903.

#82 Ppb-level mid-infrared ethane detection based on three measurement schemes using a 3.34 μm continuous-wave interband cascade laser;
C. Li, C. Zheng, L. Dong, W. Ye, F. K. Tittel, Y. Wang, Appl. Phys. B, July 2016, 122:185.

# 83 Mid-infrared surface plasmon polariton chemical sensing on fiber-coupled ITO coated glass;
J. Martínez, A. Ródenas, M. Aguiló, T. Fernandez, J. Solis, F. Díaz, Optics Letters, Vol. 41, No. 11, June 1 2016,
pp. 2493 - 2496.

# 85 Frequency modulation characteristics for interband cascade lasers emitting at 3 µm;
J. Li, Z. Du, Y. An, Appl. Phys. B, 2015, 121:7–17.

# 86 Detection of methyl mercaptan with a 3393‑nm distributed feedback interband cascade laser;
Z. Du, W. Zhen, Z. Zhang, J. Li, N. Gao, Appl. Phys. B, 2016, 122: 100.

#87 Optical‑feedback cavity‑enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis;
L. Richard, I. Ventrillard, G. Chau, K. Jaulin, E. Kerstel, D. Romanini, Appl. Phys. B, 2016, 122:247.

#89 Mars methane detection and variability at Gale crater;
C. R. Webster, P. R. Mahaffy, S. K. Atreya, G. J. Flesch, M. A. Mischna, P.-Y. Meslin, K. A. Farley, P. G. Conrad,L. E. Christensen, A. A. Pavlov, J. Martín-Torres, M.-P. Zorzano, T. H. McConnochie, T. Owen, J. L. Eigenbrode, D. P. Glavin, A. Steele, C. A. Malespin, P. Douglas Archer Jr., B. Sutter, P. Coll, C. Freissinet, C. P. McKay, J. E. Moores, S. P. Schwenzer, J. C. Bridges, R. Navarro-Gonzalez, R. Gellert, M. T. Lemmon, the MSL Science Team, Science, Vol. 347, Issue 6220, Jan 23, 2015, pp. 415-417.

#90 Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 µm interband cascade laser;
K. M. Manfred, G. A. D. Ritchie, N. Lang, J. Roepcke, J. H. van Helden, Appl. Phys. Lett. 106, 2015, 221106.

#92 Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy;
Ch. Zheng, W. Ye, N. P. Sanchez, Ch. Li, L. Dong, Y. Wang, R. J. Griffin, F. K. Tittel, Sensors and Actuators B: Chemical, Vol. 244, June 2017, 365–372.

#95 Harsh-environment-resistant OH-vibrations-sensitive mid-infrared water-ice photonic sensor;
J. Martínez, A. Ródenas, A. Stake, M. Traveria, M. Aguiló, J. Solis, R. Osellame, T. Tanaka, B. Berton, S. Kimura, N. Rehfeld, F. Díaz, Adv. Mater. Technol. 2017, 1700085.

#100 Multiheterodyne spectroscopy using interband cascade lasers;
L. A. Sterczewski, J. Westberg, C. L. Patrick, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, C. D. Merritt, I. Vurgaftman, J. R. Meyer and G. Wysocki, Opt. Eng. 57(1), 011014, Jan. 2018.

#101 Single-mode interband cascade laser multiemitter structure for two-wavelength absorption spectroscopy; J. Scheuermann, R. Weih, S. Becker, M. Fischer, J. Koeth, S. Höfling, Opt. Eng. 57(1), 011008, Sept. 2017

#102 Laser detection;

L. Hildebrandt, Hydrocarbon Engineering, Feb. 2018

#103 Detection of ethanol using a tunable interband cascade laser at 3.345 μm;
H. Gao, L. Xie, P. Gong et al. Photonic Sensors, 2018, pp. 1 - 7.

#106 Design and performance of a dual-laser instrument for multiple isotopologues of carbon dioxide and water;
J. B. McManus, D. D. Nelson and M. S. Zahniser, Optics Express Vol. 23, Issue 5, 2015, pp. 6569-6586.

# 107 Recent progress in laser‑based trace gas instruments: performance and noise analysis;
J. B. McManus, M. S. Zahniser, D. D. Nelson et. al., Appl. Phys. B, 2015, 119: 203.

# 108 Interband cascade laser-based ppbv-level mid-infrared methane detection using two digital lock-in amplifier schemes;
F. Song, C. Zheng, D. Yu, Y. Zhou, W. Yan, W. Ye, Y. Zhang, Y. Wang, F. K. Tittel, Appl. Phys. B, 2018, 124:51.

#109 Dual-feedback mid-infrared cavity-enhanced absorption spectroscopy for H2CO detection using a radio-frequency electricallymodulated interband cascade laser;
Q. He, C. Zheng, M. Lou, W. Ye, Y. Wang, F. K. Tittel, Opt. Expr., Vol. 26, No. 12, 2018, p. 15436.

#110 Performance enhancement of methane detection using a novel self-adaptive mid-infrared absorption spectroscopy technique;
F. Song, C. Zheng, W. Yan, W. Ye, Y. Zhang, Y. Wang, F. K. Tittel, IEEE Phot. Journ., Vol. 10, No. 6, December 2018.

#115 Interband cascade laser absorption sensor for real-time monitoring of formaldehyde filtration by a nanofiber membrane;
C. Yao, Z. Wang, Q. Wang, Y. Bian, C. Chen, L. Zhang, W. Ren, App. Optics, Vol. 57, No. 27, 20 September 2018, 8005.

#120 Interband cascade laser based quartz-enhanced photoacoustic sensor for multiple hydrocarbons detection;
A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, V. Spagnolo, Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV, 105400C, Jan. 26th, 2018.

#123 A streamlined approach to hybrid-chemistry modeling for a low cetane-number alternative jet fuel;
N. H. Pinkowski, Y. Wang , S. J. Cassady , D. F. Davidson , R. K. Hanson, Combustion and Flame, Vol. 208, Oct. 2019, pp. 15-26.

#124 Multi-wavelength speciation of high-temperature 1-butene pyrolysis;
N. H. Pinkowski, S. J. Cassady, D. F. Davidson, R. K. Hanson, Fuel, Vol. 244, 15th May 2019, pp. 269-281.

# 125 Tomographic laser absorption imaging ofcombustion species and temperature in the mid-wave infrared;
C. Wei, D. I. Pineda, C. S. Goldenstein, R. M. Spearrin, Opt. Exp., Vol. 26, Iss. 16, 2018, pp. 20944 - 20951.

#126 Time-resolved laser absorption imaging of ethane at 2 kHz in unsteady partially premixed flames;
K. K. Schwarm, C. Wei, D. I. Pineda, R. M. Spearrin, Appl. Opt., Vol. 58, Iss. 21, Jul. 2019, pp. 5656 - 5662.

#127 Contrast enhancement of surface layers with fast middle-infrared scanning;
T. Kümmel, T. Teumer, P. Dörnhofer, F.-J. Methner, B. Wängler, M. Rädle, Heliyon, Vol. 5, Iss. 9, Sept. 2019.

#129 Quartz-enhanced photoacoustic spectroscopy for hydrocarbon trace gas detection and petroleum exploration;
A. Sampaoloa, G. Mendunib,P. Patimiscoa, M. Giglioa, V. M.N. Passaroc, L. Donga, H. Wua, F. K. Tittel, V. Spagnoloa, Fuel, Vol. 277, 2020.

#130 Sub-ppb-level CH4 detection by exploiting a low-noise differential photoacoustic resonator with a room-temperature interband cascade laser;
H. Zhen, Y. Liu, H. Lin, R. Kan, P. Patimisco, A. Sampaolo, M. Giglio, W. Zhu, J. Yu, F. K. Tittel, V. Spagnolo, Z. Chen, Opt. Expr., Vol. 28, Iss. 13, 2020, p. 19446.

#131 Simple electrical modulation scheme for laser feedback imaging;
K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. v. Edlinger, J. Koeth, Aleksandar D. Rakic, IEEE Sens. Jour., Vol. 16, No. 7, April, 1, 2016, pp. 1937-1942.

#132 Unveiling quantum-limited operation of interband cascade lasers;
S. Borri , M. Siciliani de Cumis , S. Viciani , F. D’Amato, P. De Natale, APL Phot., Vol. 5, Iss. 3, 036101, 2020.

#133 Light and microwaves in laser frequency combs: an interplay of spatio-temporal phenomena,
M. Piccardo, D. Kazakov, B. Schwarz, P. Chevalier, A. Amirzhan, Y. Wang, F. Xie, K. Lascola, S. Becker, L. Hildebrandt, R. Weih, A. Belyanin, F. Capasso, 2019 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2019, pp. 1-2.

#135 Deep neural network inversion for 3D laser absorption imaging of methane in reacting flows;
C. Wei, K. K. Schwarm, D. I. Pineda, R. M. Spearrin, Opt. Lett., Vol. 45, No. 8, 2020, p. 2447.

#136 Interband cascade laser absorption of hydrogen chloride for high-temperature thermochemical analysis of fire-resistant polymer reactivity;
D. I. Pineda, J. L. Urban, R. M. Spearrin, Appl. Opt., Vol. 59, No. 7, 2020, pp. 2141-2148.

#137 Temperature-dependent line mixing in the R-branch of the v3 band of methane;
J. Li, A. P. Nair, K. K. Schwarm, D. I. Pineda, R. M. Spearrin, Journal of Quantitative Spectroscopy & Radiative Transfer, No. 255, 2020, 107271.

#141 Interband cascade laser arrays for simultaneous and selective analysis of C1–C5 hydrocarbons in petrochemical industry;
J. Scheuermann, P. Kluczynski, K. Siembab, M. Straszewski, J. Kaczmarek, R. Weih, M. Fischer, J. Koeth, A. Schade, S. Höfling, Appl. Spectrosc., January, 2021.

#142 Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration;
H. Wu, L. Dong, X. Yin, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia,
Sensors and Actuators B: Chemical, Vol. 297, 2019, 126753.

#143 Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser;
A. Sampaolo, S. Csutak, P. Patimisco, M. Giglio, G. Menduni, V. Passaro, F. K. Tittel, M. Deffenbaugh, V. Spagnolo, Sensors and Actuators B: Chemical, Vol. 282, 2019, pp. 952-960.

#144 Optical detection of formaldehyde in air in the 3.6 µm range;
M. Winkowski, T. Stacewicz, Biomed Opt. Expr., Dec. 2020, pp. 7019–7031.

#145 Accurate analysis of HCl in biomethane using laser absorption spectroscopy and ion-exchange chromatography;
J. A. Nwaboh, H. Meuzelaar, J. Liu, S. Persijn, J. Li, A. M. H. van der Veen, N. Chatellier, A. Papin, Z. Qu, O. Werhahna, V. Eberta, Analyst, Iss. 4, 2021.

#152 The interband cascade laser;
J. R. Meyer, W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, I. Vurgaftman, Photonics, Vol. 7, No. 3 (75), 2020.

Further Links

Material Growth ICLs: University of Wuerzburg, Technical Physics, Work Group Optoelectronic Materials and Devices I

Licence ICL Production: Naval Research Laboratory

Partnerships: Mid IR Alliance - public-private partnership with Photonics21


nanoplus ICL introduction: Introduction into nanoplus DFB Interband Cascade Lasers for Tunable Diode Laser Absorption Spectroscopy

nanoplus DFB interband cascade laser facilitates new TDLAS applications in mid-infrared

nanoplus offers a DFB interband cascade laser (ICL) at any target wavelength in the mid-infrared (MIR) between 3 μm and 6 μm. The device operates in continuous wave (cw) mode around room temperature. Specifications and behavior are very comparable to a nanoplus laser at lower wavelengths. When you set up an ICL-based analyzer, you can, hence, transfer the engineering knowledge you have gained from building short-wavelength gas sensors.

nanoplus ICL introduction

Introduction into nanoplus DFB Interband Cascade Lasers for Tunable Diode Laser Absorption Spectroscopy

The nanoplus DFB ICL opens tunable laser absorption spectroscopy (TLAS) for novel MIR applications in industrial gas sensing.

In the 3 μm to 6 μm wavelength window, now covered by interband cascade lasers, many industrially relevant trace gases have their strongest absorption bands. They show absorption strengths that are several orders of magnitude higher than those in other infrared (IR) areas. This concerns prevalent molecules such as carbon dioxide (CO2), nitric oxide (NO) or water (H2O). Most hydrocarbons, e. g. methane, equally locate their topmost absorbing features at these ICL wavelengths.

Using the strongest absorption band of the detected trace gas contributes to

  • accelerate the sensing speed
  • reduce the noise and
  • miniaturize the sensor.

nanoplus ICLs are considered for various progressive applications in industry and research. In the oil and gas sector, they enable accurate process control and support higher energy efficiency and pollutant reduction.

Compared to other sensing techniques, such as gas chromatography, TLAS-based sensors offer the unmatched advantage of real-time analysis.

nanoplus DFB ICL technology outperforms other MIR laser technologies

Different laser technologies have been investigated in recent years to access the 3 μm to 6 μm wavelength range. Besides interband cascade lasers, GaSb-based type I interband diodes and intersubband quantum cascade lasers (QCL) have been a major focus of research.

While GaSb-based type I interband diodes have the disadvantage of decreasing hole confinement and increasing Auger recombination, fast phonon scattering loss impairs the use of intersubband QCLs.

An interband cascade laser, in contrast, uses optical transitions between an electron state in the conduction band and a hole state in the valence band in a cascade of Sb-based type-II QW structures. A broken-gap band edge alignment enables the tailoring of the emission wavelength by altering the cascade structures.

Interband-cascade technology is ideal for high-performance lasing in the entire range from 3 μm to
6 μm due to relatively wavelength-independent threshold powers. It combines high performance with reasonably low power consumption. Like all nanoplus lasers, these devices are manufactured without epitaxial overgrowth, avoiding impairment of ICL performance due to the insertion of patterning-induced defects within the laser layers.

Prism Award Winners 2012

nanoplus DFB interband cascade lasers (ICLs) won the “Prism Award for Green Photonics and Sustainable Energy” in 2012. They cover the entire wavelength range from 3000 nm to 6000 nm. Many prominent gas species have their strongest absorption features in this window. They are now accessible for tunable diode laser spectroscopy in industry and research. SPIE and Photonics Media honored the laser development in a ceremony during Photonics West in San Francisco.

nanoplus wins Prism Award

From the award ceremony at Photonics West 2012, nanoplus accepts the Prism Award in the green photonics and sustainble energy category for their DFB laser at 3 µm. Michael Lebby, GM and CTO of Translucent presented the award.

nanoplus DFB interband cascade laser facilitates new TDLAS applications in mid-infrared

nanoplus offers a DFB interband cascade laser (ICL) at any target wavelength in the mid-infrared (MIR) between 3 μm and 6 μm. The device operates in continuous wave (cw) mode around room temperature. Specifications and behavior are very comparable to a nanoplus laser at lower wavelengths. When you set up an ICL-based analyzer, you can, hence, transfer the engineering knowledge you have gained from building short-wavelength gas sensors.

Discuss your project with us

nanoplus is the only laser manufacturer offering DFB interband cascade lasers in the total range from 3 μm to 6 μm. We do the complete processing in house and may adapt our processes to your specifications. Contact us now to discuss your project.

Request for quotation

Read more about our privacy policy.